Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T02:10:14.884Z Has data issue: false hasContentIssue false

Epitaxial Growth of SiC on Non-Typical Orientations and MOS Interfaces

Published online by Cambridge University Press:  21 March 2011

Hiroyuki Matsunami
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
Tsunenobu Kimoto
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
Hiroshi Yano
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
Get access

Abstract

High-quality 4H-SiC has been epitaxially grown on (1120) substrates by chemical vapor deposition. The physical properties of epilayers and MOS interfaces on both (1120) and off-axis (0001) substrates are elucidated. An unintentionally doped 4H-SiC epilayer on (1120) shows a donor concentration of 1×1014 cm−3 with a total trap concentration as low as 3.8×1012 cm−3. Inversion-type planar MOSFETs fabricated on 4H-SiC (1120) exhibit a high channel mobility of 96 cm2/Vs. The channel mobility decreases according to the T−2.2 dependence above 200K, indicating reduced Coulomb scattering and/or electron trapping. The superior MOS interface on (1120) originates from the much lower interface state density near the conduction band edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Neudeck, P.G. and Powell, J.A., IEEE Electron Device Lett. 15, 63(1994).Google Scholar
[2] Takahashi, J. and Ohtani, N., Phys. Stat. Sol. (b) 202, 163(1997).Google Scholar
[3] Burk, A.A. Jr, Barrett, D.L., Hobgood, H.M., Siergiej, R.R., Braggins, T.T., Clarke, R.C., Eldridge, G.W., Brandt, C.D., Larkin, D.J., Powell, J.A., and Choyke, W.J., Silicon Carbide and Related Materials (IOP, Bristol, 1994), p.29.Google Scholar
[4] Hallin, C., Ellison, A., Ivanov, I.G., Henry, A., Son, N.T., and Janzen, E., Mat. Sci. Forum 264268, 123(1998).Google Scholar
[5] Kimoto, T., Yamamoto, T., Chen, Z.Y., Yano, H., and Matsunami, H., Mat. Sci. Forum 338342, 189(2000).Google Scholar
[6] Agarwal, A.K., Casady, J.B., Rowland, L.B., Valek, W.F., White, M.H., and Brandt, C.D., IEEE Electron Device Lett. 18, 586(1997).Google Scholar
[7] Spitz, J., Melloch, M.R., Cooper, J.A. , Jr., and Capano, M.A., IEEE Electron Device Lett. 19, 100(1998).Google Scholar
[8] Sugawara, Y. and Asano, K., Proc. of the 10th Int. Symp. Power Semicond. Devices & Ics (Kyoto, 1998), p.119.Google Scholar
[9] Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K., and Sugawara, Y., IEEE Electron Device Lett. 20, 611(1999).Google Scholar
[10] Matsunami, H. and Kimoto, T., Mat. Sci. & Eng. R20, 125(1997).Google Scholar
[11] Chen, Z.Y., Kimoto, T., and Matsunami, H., Jpn. J. Appl. Phys. 38, L1375(1999).Google Scholar
[12] Larkin, D.J., Neudeck, P.G., Powell, J.A., and Matus, L.G., Appl. Phys. Lett. 65, 1659(1994).Google Scholar
[13] Okushi, H. and Tokumaru, Y., Jpn. J. Appl. Phys. Suppl. 20–1, 261 (1981).Google Scholar
[14] Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W.J., Schöner, A., and Nordell, N., Phys. Stat. Sol. (a) 162, 199(1997).Google Scholar
[15] Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K., and Sugawara, Y., Mat. Sci. Forum 338–342, 1105(2000).Google Scholar
[16] Schadt, M., Pensl, G., Devaty, R.P., Choyke, W.J., Stein, R., and Stephani, D., Appl. Phys. Lett. 65, 3120(1994).Google Scholar
[17] Saks, N.S., Mani, S.S., Agarwal, A.K., and Hegde, V.S., Mat. Sci. Forum 338–342, 737(2000).Google Scholar
[18] Yano, H., Kimoto, T., and Matsunami, H., Late News Abstracts of 3rd European Conf. on Silicon Carbide and Related Materials (Kloster Banz, 2000), p.10.Google Scholar
[19] Shenoy, J.N., Das, M.K., Cooper, J.A. , Jr., Melloch, M.R., and Palmour, J.W., J. Appl. Phys. 79, 3042(1996).Google Scholar
[20] Bassler, M., Afanas'ev, V., Pensl, G., and Schulz, M., Mat. Sci. Forum 338–342, 1065(2000).Google Scholar
[21] Pensl, G., Bassler, M., Ciobanu, F., Afanas'ev, V., Yano, H., Kimoto, T., and Matsunami, H., in this volume.Google Scholar
[22] Yano, H., Katafuchi, F., Kimoto, T., and Matsunami, H., IEEE Trans. Electron Devices 46, 504(1999).Google Scholar
[23] Schörner, R., Friedrichs, P., and Peters, D., IEEE Trans. Electron Devices 46, 533(1999).Google Scholar
[24] Afanas'ev, V.V., Bassler, M., Pensl, G., and Schulz, M., Phys. Stat. Sol. (a) 162, 321(1997).Google Scholar