Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T09:35:36.806Z Has data issue: false hasContentIssue false

Epitaxial Growth of Metastable SnχGe1-χ Alloy Films by Ion-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
G. He
Affiliation:
Thomas J. Watson Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
K. Saipetch
Affiliation:
Thomas J. Watson Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The group IV metastable SnχGe1-χ alloy system is an interesting semiconductor material with potential applications in the fabrication of Si-based heterojunctions and long wavelength infrared optoelectronic devices. Band structure calculations have suggested that the SnχGe1-χ alloys may have direct energy gaps continuously tunable from 0.55 eV to 0 eV for compositions χ from 0.2 to 0.6 with very small electron effective masses and hence high electron mobilities. However, synthesis of SnχGeχ-1 alloy films in the direct gap composition range by conventional epitaxial or poly crystalline thin film growth techniques have not been successful due to the severe surface segregation of Sn during the film growth.

In this work, we report the synthesis of epitaxial SnχGeχ-1/Ge/Si(001) with compositions up to χ = 0.34 by ion-assisted molecular beam epitaxy with 30–100 eV Ar+ ions produced by an electron cyclotron resonance ionization source with ion to atom flux ratios of the order of unity in the substrate temperature range of 120 °C to 200 °C. High flux low energy ion beam irradiation greatly inhibits Sn segregation without interrupting epitaxy. In situ reflection high energy electron diffraction as well as x-ray rocking curve indicated epitaxial SnχGeχ-1 alloy films, and Rutherford backscattering spectra confirmed the SnχGeχ-1 alloy compositions and indicated an absence of Sn segregation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jenkins, D.W. and Dow, J.D., Phys. Rev. B 36, 7994 (1987).Google Scholar
[2] Craig, B.I., Superlattices and Microstructures 12, 1 (1992).Google Scholar
[3] Saipetch, K. and Atwater, H.A., (California Institute of Technology) unpublished.Google Scholar
[4] Kaxiras, E., (Harvard University) unpublished.Google Scholar
[5] Vogl, P., Hjalmarson, H.P. and Dow, J.D., J. Phys. Chem. Solids, 44, 365 (1983).Google Scholar
[6] Harwit, A., Pukite, P.R., Angilello, J. and Iyer, S.S., Thin Solid Films 184, 395 (1990).Google Scholar
[7] Piao, J., Beresford, R., Licata, T., Wang, W.I. and Homma, H., J. Vac. Sci. Technol. B 8, 221 (1990).Google Scholar
[8] Wegscheider, W., Eberl, K., Menczigar, U. and Abstreiter, G., Appl. Phys. Lett. 57, 875 (1990).Google Scholar
[9] Gossmann, H.-J., J. Appl. Phys. 68, 2791 (1990).Google Scholar
[10] Fitzgerald, E.A., Freeland, P.E., Asom, M.T., Lowe, W.P., Macharrie, R.A. Jr, Weir, B.E., Kortan, A.R., Thiel, F.A., Xie, Y.-H., Sergent, A.M., Cooper, S.L., Thomas, G.A. and Kimerling, L.C., J. Elec. Mat. 20, 489 (1991).Google Scholar
[11] Eberl, K., Wegscheider, W. and Abstreiter, G., J. Crystal Growth 111, 882 (1991).Google Scholar
[12] Vogl, P., Olajos, J., Wegscheider, W. and Abstreiter, G., Surface Science 267, 83 (1992).Google Scholar
[13] Wegscheider, W., Olajos, J., Menczigar, U., Dondl, W. and Abstreiter, G., J. Crystal Growth 123, 75 (1992).Google Scholar
[14] Shah, S.I., Greene, J.E., Abels, L.L., Yao, Q. and Raccah, P.M., J. Crystal Growth 83, 3 (1987).Google Scholar
[15] Oguz, S., Paul, W., Deutsch, T.T., Tsaur, B-Y. and Murphy, D.V., Appl. Phys. Lett. 43, 848 (1983).Google Scholar
[16] Chang, I.T.H., Cantor, B. and Cullis, A.G., J. Non-Crystalline Solids 117/118, 263 (1990).Google Scholar
[17] Lee, S.M., J. Appl. Phys. 75, 1987 (1994).Google Scholar
[18] Thurmond, C.D., J. Phys. Chem. 57, 827 (1953).Google Scholar
[19] Thurmond, C.D., Trumbore, F.A. and Kowalchik, M., J. Chem. Phys. 24, 799 (1956).Google Scholar
[20] Klemm, W. and Stvhr, H., Anorg, Z.. Allg. Chem. 241, 305 (1939).Google Scholar
[21] Farrow, R.F.C., Robertson, D.S., Williams, G.M., Cullis, A.G., Jones, G.R., Young, I.M. and Dennis, P.N.J., J. Crystal Growth 54, 507 (1981).Google Scholar
[22] Reno, J.L. and Stephenson, L.L., Appl. Phys. Lett. 54, 2207 (1989).Google Scholar
[23] Asom, M.T., Kortan, A.R., Kimerling, L.C. and Farrow, R.C., Appl. Phys. Lett. 55, 1439 (1989).Google Scholar
[24] Ito, T., Jpn. J. Appl. Phys. 31, L920 (1992).Google Scholar
[25] Soma, T., Matsuo, H. and Kagaya, S., Phys. Stat. Solid. 105, 311 (1981).Google Scholar
[26] Massalski, T.B., Binary Alloy Phase Diagrams, vol. 2, Am. Soc. Metals, 1986.Google Scholar
[27] Knall, J., Sundgren, J.-E., Markert, L.C. and Greene, J.E., Surface Science 214, 149 (1989).Google Scholar
[28] Murty, M.V.R. and Atwater, H.A., (California Insitute of Technology) unpublished.Google Scholar
[29] Barnett, S.A. and Greene, J.E., Surf. Sci. 151, 67 (1985).Google Scholar
[30] Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, San Diego, 1993.Google Scholar
[31] Aziz, M.J., J. Appl Phys. 53, 1158 (1982).Google Scholar
[32] Goldman, L.M. and Aziz, M.J., J. Mater. Res. 2, 524 (1987).Google Scholar