Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T09:02:06.203Z Has data issue: false hasContentIssue false

Epitaxial growth of luminescent Sn-Cr doped β-Ga2O3 nanowires

Published online by Cambridge University Press:  07 July 2014

Julio Ramírez-Castellanos
Affiliation:
Department of Inorganic Chemistry I, Facultad de Cc. Químicas, Universidad Complutense de Madrid, Madrid (Spain).
Margarita-Andrea Peche-Herrero
Affiliation:
Department of Inorganic Chemistry I, Facultad de Cc. Químicas, Universidad Complutense de Madrid, Madrid (Spain).
Iñaki López
Affiliation:
Department of Materials Physics, Facultad de Cc. Físicas, Universidad Complutense de Madrid, Madrid (Spain).
Emilio Nogales
Affiliation:
Department of Materials Physics, Facultad de Cc. Físicas, Universidad Complutense de Madrid, Madrid (Spain).
Bianchi Méndez
Affiliation:
Department of Materials Physics, Facultad de Cc. Físicas, Universidad Complutense de Madrid, Madrid (Spain).
Javier Piqueras
Affiliation:
Department of Materials Physics, Facultad de Cc. Físicas, Universidad Complutense de Madrid, Madrid (Spain).
José María González-Calbet
Affiliation:
Department of Inorganic Chemistry I, Facultad de Cc. Químicas, Universidad Complutense de Madrid, Madrid (Spain).
Get access

Abstract

Elongated micro- and nanostructures of Sn doped or Sn and Cr co-doped monoclinic gallium oxide have been grown by a thermal method. The presence of Sn during growth has been shown to strongly influence the morphology of the resulting structures, including Sn doped branched wires, whips, and needles. Subsequent co-doping with Cr is achieved through thermal diffusion for photonic purposes. The formation mechanism of the branched structures has been studied by transmission electron microscopy (TEM). Epitaxial growth has been demonstrated in some cases, revealed by a very high quality interface between the central rod and the branches of the structures, while in other cases, formation of extended defects such as twins has been observed in the interface region. Cathodoluminescence (CL) measurements show a Sn-related complex band in the Sn-doped structures. In the Sn−Cr co-doped samples, the characteristic, very intense Cr3+ red luminescence emission quenches the bands observed in the Sn doped samples. Branched, Sn−Cr co-doped structures were studied with microphotoluminescence imaging and spectroscopy, and waveguiding behavior was observed along the trunks and branches of these structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barth, S.; Hernandez-Ramirez, F.; Holmes, J. D.; Romano-Rodriguez, A. Prog. Mater. Sci., 55, 563627 (2010).CrossRefGoogle Scholar
Lu, J. G.; Chang, P.; Fan, Z. Mater. Sci. Eng. R 52, 4991 (2006).CrossRefGoogle Scholar
Shimamura, K.; Víllora, E. G.; Ujiie, T.; Aoki, K. Appl. Phys. Lett. 92, 201914–1−201914-3 (2008).CrossRefGoogle Scholar
Varley, J. B.; Weber, J. R.; Janotti, A.; Van de Walle, C. G. Appl. Phys. Lett. 97, 142106–1−142106-3 (2010).CrossRefGoogle Scholar
Ronning, C.; Borschel, C.; Geburt, S.; Niepelt, R. Mater. Sci. Eng. R, 70, 3043 (2010).CrossRefGoogle Scholar
Nogales, E.; Mendez, B.; Piqueras, J.; Garcıa, J. A. Nanotechnology, 20, 115201–1−115201-5 (2009).CrossRefGoogle Scholar
Nogales, E.; Garcia, J. A.; Mendez, B.; Piqueras, J. J. Appl. Phys. 101, 033517–1−033517-4 (2007).CrossRefGoogle Scholar
Binet, L.; Gourier, D. J. Phys. Chem. Solids, 59, 12411249 (1998).CrossRefGoogle Scholar
Miyata, T.; Nakatani, T.; Minami, T. J. Lumin. 8789, 11831185 (2000).CrossRefGoogle Scholar
Maximenko, S. I.; Mazeina, L.; Picard, Y. N.; Freitas, J. A.; Bermudez, V. M.; Prokes, S. M. Nano Lett. 9, 32453251 (2009).CrossRefGoogle Scholar
Nogales, E.; Hidalgo, P.; Lorenz, K.; Mendez, B.; Piqueras, J.;Alves, E. Nanotechnology, 22, 285706–1−285706-7 (2011).CrossRefGoogle Scholar
Zheng, J. Y.; Yan, Y.; Wang, X.; Zhao, Y. S.; Huang, J.; Yao, J. J. Am. Chem. Soc. 134, 28802883 (2012).CrossRefGoogle Scholar
Mieszawska, A. J.; Jalilian, R.; Sumanasekera, G. U.; Zamborini, F. P. Small, 3, 722756 (2007).CrossRefGoogle Scholar
Kurt, H.; Giden, I. H.; Citrin, D. S. Opt. Express, 19, 2682726838 (2011).CrossRefGoogle Scholar