Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:21:47.678Z Has data issue: false hasContentIssue false

Epitaxial Growth Mechanism and Physical Properties of Ultra thin Films of La0.6Sr0.4MnO3

Published online by Cambridge University Press:  10 February 2011

Yoshinori Konishi
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba 305, Japan
Masahiro Kasai
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba 305, Japan
Masashi Kawasaki
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba 305, Japan Department of Innovative and Engineered Materials, Tokyo Inst. of Technology, Yokohama 226, Japan
Yoshinori Tokura
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba 305, Japan Department of Applied Physics, The University of Tokyo, Tokyo 113, Japan
Get access

Abstract

Thin films of La1-xSrxMnO3 (x=0.4) were fabricated using pulsed laser deposition (PLD) methods. The surface morphology of the films was sensitively affected by oxygen pressure during deposition. At high oxygen pressure (∑150 mTorr), randomly aligned grains were nucleated on the epitaxial film. When the pressure was reduced to 100 mTorr, the epitaxial film had very smooth surface. Under this condition, the thickness dependence of resistivity and magnetization were analyzed. Even 6 nm thick film showed ferromagnetic metallic behavior. The AFM images of ulta thin films deposited on wet-etched SrTiO3 showed atomically flat terraces and 0.4 nm steps. The film growth mode can be tuned to either layer by layer or step flow by the deposition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tokura, Y., Urushibara, A., Moritomo, Y., Arima, T., Asamitu, A., Kido, A., and Furukawa, H., J. Phys. Soc. Jpn., 63, 3931 (1994).Google Scholar
2. Asamitu, A., Moritomo, Y., Tomioka, Y., Arima, T., and Tokura, Y., Nature 373, 407 (1995).Google Scholar
3. Tomioka, Y., Asamitu, A., Moritomo, Y., Kuwahara, H., and Tokura, Y., Phys. Rev. Lett. 7 4, 5108(1995).Google Scholar
4. Tomioka, Y., Asamitu, A, Kuwahara, H., Moritomo, Y., and Tokura, Y., Phys. Rev. B 53, R1689 (1996).Google Scholar
5. Kuwahara, H., Tomioka, Y., Asamitu, A., Moritomo, Y., and Tokura, Y., Science 270, 961 (1995).Google Scholar
6. Sun, J. Z., Gallagher, W. J., Duncombe, P. R., Krusin-Elbaum, L., Altman, R. A, Gupta, A., Lu, Yu, Gong, G. Q., and Xiao, Gang, Appl. Phys. Lett. 69, 3266 (1996)Google Scholar
7. Dong, Z. W., Ramesh, R., Venkatesan, T., Johnson, Mark, Chan, Z. Y., Pai, S. P., Talyansky, V., Shaima, R. P., Lobb, C. J., and Greene, R. L., Appl. Phys. Lett. 71, 1718(1997)Google Scholar
8. Kawai, T., Kanai, M., and Tabata, Hitoshi, Materials Sienceand Engimeering B41, 123 (1996)Google Scholar
9. Kasai, M., Kuwahara, H., Moritomo, Y., Tomioka, Y., and Tokura, Y., Jpn. J. Appl Phys., 35, L489 (1996).Google Scholar
10. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science, 266, 1540 (1994)Google Scholar
11. Vas'Ko, V. A, Nordman, C. A, Kraus, P. A., Achutharaman, V. S., Ruosi, A. R., and Goldman, A. M., Appl. Phys. Lett. 68, 2571 (1996)Google Scholar