Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:51:33.762Z Has data issue: false hasContentIssue false

Enhancement of the thermoelectric figure-of-merit in nanowire superlattices

Published online by Cambridge University Press:  23 March 2015

Chumin Wang
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D.F., México
J. Eduardo González
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D.F., México
Vicenta Sánchez
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, D.F., México
Get access

Abstract

Based on the Kubo-Greenwood formula, the thermoelectric effects in periodically and quasiperiodically segmented nanowires are studied by means of a real-space renormalization plus convolution method, where the electrical and lattice thermal conductivities are respectively calculated by using the tight-binding and Born models; the latter includes central and non-central interactions between nearest-neighbor atoms. The results show a significant enhancement of the thermoelectric figure-of-merit (ZT) induced by the structural disorder and/or the reduction of nanowire cross-section area. In addition, we observe a maximum ZT in both the chemical-potential and temperature spaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tian, Y., Sakr, M. R., Kinder, J. M., Liang, D., MacDonald, M. J., Qiu, R. L. J., Gao, H.-J., and Gao, X. P. A., Nano Lett. 12, 6492 (2012).CrossRefGoogle Scholar
Andrews, S. C., Fardy, M. A., Moore, M. C., Aloni, S., Zhang, M., Radmilovic, V., and Yang, P., Chem. Sci. 2, 706 (2011).CrossRefGoogle Scholar
Fang, H., Feng, T., Yang, H., Ruan, X., and Wu, Y., Nano Lett. 13, 2058 (2013).CrossRefGoogle Scholar
Elliott, R. J., Krumhansl, J. A., and Leath, P. L., Rev. Mod. Phys. 46, 465 (1974).CrossRefGoogle Scholar
Sánchez, V. and Wang, C., Phys. Rev. B 70, 144207 (2004).CrossRefGoogle Scholar
Tritt, T. M. (Ed.), Thermal Conductivity - Theory, Properties and Applications (Kluwer Academic-Plunum Pub., New York, 2004) pp. 3.CrossRefGoogle Scholar
Markussen, T., Nano Lett. 12, 4698 (2012).CrossRefGoogle Scholar
Economou, E. N., Green’s Functions in Quantum Physics, 3rd Ed. (Springer-Verlag, Berlin, 2006) pp. 67 and 80.CrossRefGoogle Scholar
Flicker, J. K. and Leath, P. L., Phys. Rev. B 7, 2296 (1973).CrossRefGoogle Scholar
Alfaro, P., Cisneros, R., Bizarro, M., Cruz-Irisson, M., and Wang, C., Nanoscale 3, 1246 (2011).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E. S., Nature Materials 7, 105 (2008).CrossRefGoogle Scholar
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar