Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T11:28:26.015Z Has data issue: false hasContentIssue false

Enhancement of Field Emission Current from ZnO Nanorods Fabricated by Two Step Chemical Vapor Deposition with Laser Ablation of ZnO

Published online by Cambridge University Press:  01 February 2011

Takashi Hirate
Affiliation:
[email protected], Kanagawa University, Electronics and Informatics Frontiers, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan, +81-45-481-5661, +81-45-491-7915
Takashi Kimpara
Affiliation:
[email protected], Kanagawa University, Electronics and Informatics Frontiers, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 2218686, Japan
Kazumoto Takizawa
Affiliation:
[email protected], Kanagawa University, Electronics and Informatics Frontiers, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 2218686, Japan
Tomomasa Satoh
Affiliation:
[email protected], Kanagawa University, Electronics and Informatics Frontiers, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 2218686, Japan
Get access

Abstract

We fabricated well-aligned ZnO nanorods with thin diameter by two-step chemical vapor deposition method combined with laser ablation of a sinterd ZnO target. Firstly, well-aligned ZnO nanorods with thick diameter of about 110 nm are grown on an n-Si (111) wafer. Next, a thin ZnO nanorod with about 30 nm diameter is grown on the center of the flat tip of each well-aligned and thick ZnO nanorod by controlling a flow rate of oxygen. Although thick ZnO nanorods do not emit a recognizable field emission current, thin ZnO nanorods with 1500 nm length show a field emission current of 500 μA under an electric field of 31 V/μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Heer, W. A., Chatelain, A., and Uqarte, D., Science, 270 (1995) 1179.Google Scholar
2. Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science, 297 (2002) 787.Google Scholar
3. Hirate, T., Takei, N., and Satoh, T., Proceedings of the 2002 International Conference on the Science and Technology of Emissive Displays and Lighting, 2002, p.81.Google Scholar
4. Mao, S. X. and Zhao, M., Appl. Phys. Lett. 83 (2003) 993.Google Scholar
5. Xing, Y. J., Xi, Z. H., Xue, Z. Q., Zhang, X. D., Song, J. H., Wang, R. M., Xu, J., Song, Y., Zhang, S. L., and Yu, D. P., . Appl. Phys. Lett. 83 (2003) 1689.Google Scholar
6. Y.an, M., Zhang, H. T., Widjaja, E. J., and Chang, R. P. H., Appl. Phys. Lett. 83 (2003) 5240.Google Scholar
7. Choy, J. H., Jang, E. S., Won, J. H., Chung, J. H., Jang, D. J., and Kim, Y. W., Appl. Phys. Lett. 84 (2004) 287.Google Scholar
8. Gao, P.X. and Wang, Z.L., Appl. Phys. Lett. 84 (2004) 2883.Google Scholar
9. Zhang, B. P., Wakatsuki, K., Binh, N. T., Segawa, Y., and Usami, N., J. Appl. Phys. 96, (2004) 340.Google Scholar
10. Hirate, T., Sasaki, S., Li, W., Miyashita, H., Kimpara, T., and Satoh, T., Thin Solid Films, 487 (2005) 35.Google Scholar
11. Miyashita, H., Satoh, T., and Hirate, T., Superlattices and Microstructures, 39 (2006) 67.Google Scholar
12. Wang, R. C., Liu, C. P., Huanga, J. L., Chen, S. J., Tseng, Y.K., and Kung, S.-C., Appl. Phys. Lett. 87 (2005) 013110..Google Scholar
13. Zhang, X., Zhang, Y., Xu, J., Wang, Z., Chen, X., Yu, D., Zhang, P., Qi, H., and Tian, Y., Appl. Phys. Lett. 87 (2005) 013111.Google Scholar
14. Xu, C.X., Sun, X.W., and Chen, B.J., Appl. Phys. Lett. 84 (2004) 1540.Google Scholar