Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T02:30:58.105Z Has data issue: false hasContentIssue false

Enhanced Photoluminescence for ZnS Nanocrystals Doped with Mn2+ Close to Carboxyl Groups and/or S2− Vacancies

Published online by Cambridge University Press:  09 August 2011

T. Isobe
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan, [email protected]
T. Igarashi
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan, [email protected]
M. Konishi
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan, [email protected]
M. Senna
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan, [email protected]
Get access

Abstract

ZnS nanocrystals doped with Mn2+ ions are prepared by a solution process and subsequent UV irradiation to produce the samples with different S/(Zn+Mn) ratios and/or surface modification by acrylic acids. Coordination states around Mn2+, ions were examined at 9 and 35 GHz by electron paramagnetic resonance spectroscopy. The Mn2+ sites in the vicinity of 2- vacancies or carboxyl groups are observed at the frequencies more than 9 or 35 GHz, respectively, for nanocrystals, but are not for the bulk sample of 250 nm diameter. Such Mn2+ sites enhance the photoluminescence due to d-d transition of Mn2+ ions through energy transfer from S2- vacancies or carboxyl groups, excited simultaneously by a light of 350 nm for exciting ZnS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Senna, M., Igarashi, T., Konishi, M. and Isobe, T., Proceedings of the Fourth International Display Workshop, (ITE&SID, Nagoya, 1997) pp. 613616.Google Scholar
2. Igarashi, T., Isobe, T. and Senna, M., Phys. Rev. B 56(11), 64446445 (1997).Google Scholar
3. Isobe, T., Igarashi, T. and Senna, M., in Microcrystalline and Nanocrystalline Semiconductors edited by Collins, R. W., Fauchet, P. M., Shimizu, I., Vial, J. C., Shimada, T. and Alivisatos, A. P.. (Mat. Res. Soc. Symp. Proc. 452, Pittsburgh, PA, 1997) pp. 305310.Google Scholar
4. Yu, I., Isobe, T. and Senna, M., J. Phys. Chem. Solids, 57(4), 373379 (1996).Google Scholar
5. Yu, I., Isobe, T., Senna, M. and Takahashi, S., Mater. Sci. Eng. B38, 177–181 (1996).Google Scholar
6. Kennedy, T. A., Glaser, E. R., Klein, P. B. and Bhargava, R. N., Phys. Rev. B52, R14356-R14359 (1995).Google Scholar
7. Misra, S. K., Physica B, 203, 193200 (1994).Google Scholar
8. Ishikawa, Y., J. Phys. Soc. Jpn. 21(8), 14731481 (1966).Google Scholar
9. Allen, B., J. Chem. Phys. 43(11), 38203826 (1965).Google Scholar
10. Johnson, L. W., Maria, H. J. and McGlynn, S. P., J. Chem. Phys. 54(9), 38233829 (1971).Google Scholar
11. Khosravi, A. A., Kundu, M., Jatwa, L., Deshpande, S. K., Bhagwat, U. A., Sastry, M. and Kulkarni, S. K., Appl. Phys. Lett. 67(18), 27022704 (1995).Google Scholar
12. Becker, W. G. and Bard, A. J., J. Phys. Chem. 87, 48884893 (1983).Google Scholar
13. Hikichi, K., Hiraoki, T. and Ohta, N., Polymer J. 16(5), 437439 (1984).Google Scholar
14. Yu, J., Liu, H., Wang, Y., Fernandez, F. E., Jia, W., Sun, L., Jin, C., Li, D., Liu, J. and Huang, S., Opt. Lett. 22(12), 913915 (1997).Google Scholar
15. Gallagher, D., Heady, W. E., Racz, J. M. and Bhargava, R. N., J. Mater. Res. 10(4), 870876 (1995).Google Scholar
16. Counio, G., Esnouf, S., Gacoin, T. and Boilot, J. P., J. Phys. Chem. 100, 20021–20026 (1996).Google Scholar