Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:53:58.541Z Has data issue: false hasContentIssue false

Enhanced Nonlinear Optical Response of Coated Nanoparticles

Published online by Cambridge University Press:  21 February 2011

N. Kalyaniwalla
Affiliation:
Rensselaer Polytechnic Institute, Physics Dept., Troy, NY 12180-3590
J.W. Haus
Affiliation:
Rensselaer Polytechnic Institute, Physics Dept., Troy, NY 12180-3590
M.H. Birnboim
Affiliation:
Rensselaer Polytechnic Institute, Dept. of M. E., A. E. and M., Troy, NY 12180-3590
R. Inguva
Affiliation:
University of Wyoming, Physics Dept., Laramie, WY
W.P. Ma
Affiliation:
Rensselaer Polytechnic Institute, Dept. of M. E., A. E. and M., Troy, NY 12180-3590
Get access

Abstract

We study coated, nanometer-size, ellipsoidal particles that have a semiconductor or polymer core surrounded by a metal coating. We predict that composite materials containing these particles will have much larger enhancement of the nonlinear optical response than had previously been found by using semiconductor colloid suspensions or semiconductor - doped glasses. The enhancement is due to the surface plasmon resonance from the metal dielectric constant that increases the local field in the core material. The frequency of the resonance and the enhancement depend upon the particle shape and the coating thickness, as well as on the specific materials.

Also, we predict intrinsic optical bistability in these new materials and show that the threshold intensity for optical bistability can be greatly reduced by using the coated particles. We predict a switching intensity of silver coated GaAs particles below 100W/cm2

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beek, L. K. H. Van, Progress in Dielectrics, Volume 7, ed. Birks, J. B. (CRC Press, Cleveland, 1967), p. 69.Google Scholar
2. Jain, R. K. and Lind, R. C., J. Opt. Soc. Am 73, 647 (1983).Google Scholar
3. Rousignol, P., Ricard, D., Lukasik, J. and Flytzanis, C., J. Opt. Soc. Am. B4, 5 (1987).Google Scholar
4. Ricard, D., Roussignol, P. and Flytzanis, C., Opt. Lett 10, 511 (1985); F. Hache, D. Ricard and C. Flytzanis, J. Opt. Soc. Am B3, 1647 (1986); F. Hache, D. Ricard, C. Flytzanis and U. Kreibig, Appl. Phys. A47, 347 (1988).Google Scholar
5. Haus, J. W., Kalyaniwalla, N., Inguva, R., Bloemer, M. and Bowden, C. M., J. Opt. Soc. Am 6, 797 (1989); J. W. Haus, R. Inguva and C. M. Bowden, Phys. Rev. A40, in press (1989);Google Scholar
6. Bloemer, M. J., Haus, J. W. and Ashley, P. R., J. Opt. Soc Am B, in review 989); M. J. Bloemer, P. R. Ashley, J. W. Haus and N. Kalyaniwalla, IEEE J. uant. Electron, accepted (1989).Google Scholar
7. Neeves, A. E. and Birnboim, M. H., J. Opt. Soc. Am B6, 787 (1989); Opt. Lett 13, 1087 (1988).Google Scholar
8. Haus, J. W., Kalyaniwalla, N., Inguva, R. and Bowden, C. M., J. Appl. Phys. 65, 1420 (1989); D. S. Chemla and D. A. B. Miller, Opt. Ltt 11, 522 (1986).Google Scholar
9. Chemla, D. S., Miller, D. A. B., Smith, P. W., Gossard, A. C., Wiegmann, W., IEEE J. Quant. Electron QE–20, 2655 (1986).Google Scholar
10. Palik, E. D., ed. Handbook of Optical Constants of Solids, (Academic, New York, 1985).Google Scholar
11. Birnboim, M.H., Haus, J.W., Kalyaniwalla, N., Ma, W.P. and Inguva, R., Optical Society of America, Technical Digest (1989), papaer THJ4.Google Scholar
12. Birnboim, M.H., Ma, W.P., Haus, J.W., Kalyaniwalla, N. and Inguva, R., unpublished (1989); N. Kalyaniwalla, J.W. Haus, R. Inguva, M.H. Birnboim and W.P. Ma, unpublished (1989).Google Scholar