Article contents
Enhanced Cooling in Doped Semiconductors Due to Nonlinear Peltier Effect
Published online by Cambridge University Press: 01 February 2011
Abstract
Thermoelectric coefficients become a function of the applied field and temperature gradient if the latter become large enough. So in analyzing device performance in this regime accurately, it is important to include the non-linear terms. Non-linearity is a consequence of electron heating. For low doping concentrations, nonlinearity can happen at low currents. We will show that at room temperature in InGaAs it starts at practical currents on the order of 105 A/cm2. At low temperatures the Peltier coefficient goes to zero. However, its nonlinear term does not change as much. Since the nonlinear heat current goes with the third power of current, there is a chance that in some cases it can overcome the joule heating. We will show that at T=77K the cooling power can be enhanced by a factor of seven compared to room temperature. Nonlinearity of the Seebeck coefficient becomes an important factor when high temperature gradients are applied on nanoscale samples, and can lead to enhanced power generation
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1044: Symposium U – Thermoelectric Power Generation , 2007 , 1044-U10-04
- Copyright
- Copyright © Materials Research Society 2008
References
- 3
- Cited by