Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:42:19.525Z Has data issue: false hasContentIssue false

Enhanced Carbon Diffusion in Silicon During 900°0 Annealing

Published online by Cambridge University Press:  21 February 2011

J. P. Kalejs
Affiliation:
Mobil Solar Energy Corporation, 16 Hickory Drive, Waltham, MA 02254, U.S.A.
U. Gösele
Affiliation:
Zentrale Technik, Fdrschungslaboratorlen, 8000 MUnchen, Federal Republic of Germany
Get access

Abstract

Enhanced diffusion of carbon Is observed to be produced during anneal ing of silicon at 900°C under conditions of surface oxidation and phosphorus in-diffusion. Silicon containing high concentrations of carbon (∼9 × 1017/cm3 substitutional) and varying levels of interstitial oxygen and differing defect concentrations has been studied. Diffusion coefficient enhancement over the value found for an anneal in an inert ambient is by a factor of three during oxidation and a factor of forty with phosphorus in-diffusion. Carbon accumulation takes place in a region 0.3–0.5 microns from the sample surface only under conditions of phosphorus in-diffusion and is attributed to carbon precipitation. A model that assumes Interactions between silicon self-interstitials and the carbon can explain both the enhanced diffusion and the carbon accumulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For references, see Kolbesen, B.O. and MUhlbauer, A., Solid State Electron., 21, 759 (1982).10.1016/0038-1101(82)90206-4CrossRefGoogle Scholar
2. Kalejs, J.P. and Ladd, L.A., Appl. Phys. Lett., 45, 540 (1984).10.1063/1.95307CrossRefGoogle Scholar
3. Kalejs, J.P., Ladd, L.A. and Göisele, U., Appl. Phys. Lett., 45, 268 (1984).10.1063/1.95167CrossRefGoogle Scholar
4. Glelchmann, R., Kalejs, J.P., and Ast, D.G., this Symposium Volume.Google Scholar
5. Newman, R.C. and Wakefield, J., J. Phys. Chem. Solids, 12, 230 (1961); Metallurgy of Semiconductor Materials, edited by J.B. Schroeder (Interscience, New York, 1961), p. 201.10.1016/0022-3697(61)90032-4CrossRefGoogle Scholar
6. Hu, S.M., J. Appl. Phys., 45, 1567 (1974).10.1063/1.1663459CrossRefGoogle Scholar
7. Antonladis, D.A., J. Electrochem. Soc., 129, 1093 (1982).10.1149/1.2124034CrossRefGoogle Scholar
8. Göisele, U. and Tan, T.Y., In Agaregation Phenomena of Point Defects in Silicon edited by Sirtl, E. and Goorissen, J. (Electrochemical Society, Pennington, NJ, 1983), p. 17.Google Scholar
9. For further references, see GWsele, U. and Tan, T.Y., in Defects In Semiconductors II, edited by Corbett, J.W. and Mahajan, S. (North-Holland, New York, 1983), p. 153.Google Scholar
10. Mizuo, S. and Higuchl, H., Jpn. J. Appl. Phys., 20, 739 (1981).10.1143/JJAP.20.739CrossRefGoogle Scholar
11. For a detailed quantitative treatment, see Tan, T.Y., Gbsele, U., and Morehead, F., Appl. Phys., A31 97 (1983).10.1007/BF00616312CrossRefGoogle Scholar
12. See, e.g., Strunk, H., Gtosele, U., and Kolbesen, B.O., Appl. Phys. Lett. 34, 530 (1979); R.M. Harris and D.A. Antonladis, Appl. Phys. Lett., 4A, 937 (1983); P. Fahey, R.W. Dutton, and S.M. Hu, Appl. Phys. Lett., A4, 777 (1984).10.1063/1.90853CrossRefGoogle Scholar
13. Annual Book of ASTM Standards (ASTM, Philadelphia, 1981), Part 43, F121.Google Scholar
14. Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids, 32, 1211 (1971).10.1016/S0022-3697(71)80179-8CrossRefGoogle Scholar