Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T05:31:40.775Z Has data issue: false hasContentIssue false

Enhanced adhesion of coating layers by Ion Beam Mixing: An application for nuclear hydrogen production

Published online by Cambridge University Press:  17 August 2011

Jae-Won Park
Affiliation:
Korea Atomic Energy Research Institute, Daejon-City, South.Korea
Hyung-Jin Kim
Affiliation:
Korea Atomic Energy Research Institute, Daejon-City, South.Korea
Sunmog Yeo
Affiliation:
Korea Atomic Energy Research Institute, Daejon-City, South.Korea
Seong-Duk Hong
Affiliation:
Korea Atomic Energy Research Institute, Daejon-City, South.Korea
Get access

Abstract

The bonding between two dissimilar materials has been a problem, partiularly in coating metals with non-metallic protective layer. In this work, it is demonstrated that a strong bonding between ceramics/metal can be achieved by mixing the atoms at the interface by ion-beam. Specifically, SiC coating on Hastelloy X was studied for a high temperature corrosion protection. Auger elemental mapping across the interface shows a far broader mixed region than the region expected by SRIM calculation, which is thought to be due to the thermal spike liquid state diffusion. The results showed that, although the thermal expansion coefficient of Hastelloy X is about three times higher than that of SiC, the film did not peel-off at above 900 oC confirming excellent adhesion. Instead, the SiC film was cracked along the grain boundary of the substrate above 700 oC. At above 900 oC, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed area, it is suggested that the coating/IBM process should be repeated multiply.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ota, Hiroyuki, Kubo, Shinji, Hodotsuka, Masatoshi, Inatomi, Takanari, Kobayashi, Masahiko, Terada, Atuhiko, Kasahara, Seiji, Hino, Ryutaro, Ogura, Kenji, Maruyama, Shigeki, 13th International Conference on Nuclear Engineering, Beijing, China, May 16-20, 2005, ICONE-13-50494 Google Scholar
2. Fujikawa, S. et al. ., J. Nucl. Sci. Technol., Vol. 41 (2004) 1245 10.1080/18811248.2004.9726354Google Scholar
3. Riviere, J.-P., Delafond, J., Misaelides, P., Noli, F., Surf. Coat. Technol. 100101 (1998) 243 10.1016/S0257-8972(97)00622-1Google Scholar
4. Fujikawa, S., Hatashi, H., Nakazawa, T., Kawasaki, K., Iyoku, T., Nakagawa, S. and Sakaba, N.., J. Nucl. Sci. Technol., 41 (2004) 1245 10.1080/18811248.2004.9726354Google Scholar
5. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.Google Scholar
6. Tian, J., Zhang, Q., Xia, L., Yoon, S. F., Ahn, J., Byon, E. S., Zhou, Q., Wang, S. G., Li, J. Q., Yang, D. J., Mater. Res. Bulletin, 39(2004)917922.10.1016/j.materresbull.2004.03.021Google Scholar
7. Neklyudov, I. M., Morozov, A. N., Physica B 350 (2004) 325337.10.1016/j.physb.2004.03.314Google Scholar
8. Nakajima, K., Okamoto, S., Phada, T., Journal of Applied Physics 65(1989)4357.10.1063/1.343272Google Scholar
9. Nastasi, M. and Mayer, J.W., Materials Science and Engineering, R12 (1994) 152.Google Scholar
10. Park, J., Khan, Z. S., Kim, H., Kim, Y., Mater. Res. Symp. Proc., Vol. 1125 (2009)65 Google Scholar
11. Jacob, C., Pirouz, P., Kuo, H.-I. and Mehregany, M., Solid-State Electronics Vol. 42, No. 12 (1998) 23292334.10.1016/S0038-1101(98)00234-2Google Scholar
12. Cho, H. J., Hwang, C. S., Bang, W. and Kim, H. J., in Silicon Carbide and Related Materials, ed. Spencer, M. G., Devaty, R. P., Edmond, J. A., Asif Khan, M., Kaplan, R. and Rahman, M.. Inst. Phys. Conf. Ser. 137, Bristol and Philadelphia (1994) 663.Google Scholar
13. Rastegaeva, M. G., Andreev, A. N., Zelenin, V. V., Babanin, A. I., Nikitina, I. P., Chelnokov, V. E. and Rastegaev, V. P., in Silicon Carbide and Related Materials 1995, ed. Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H.. Inst. Phys. Conf. Ser. 142, Bristol and Philadelphia, 1996, p. 581.Google Scholar
14. Liu, S., Reinhardt, K., Severt, C. and Sco®eld, J., in Silicon Carbide and Related Materials 1995, ed. Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H.. Inst. Phys. Conf. Ser. 142, Bristol and Philadelphia, 1996, p. 589.Google Scholar
15. Steckl, A. J., Su, J. N., Yih, P. H., Yuan, C. and Li, J. P., in Silicon Carbide and Related Materials, ed. Spencer, M. G., Devaty, R. P., Edmond, J. A., Asif Khan, M., Kaplan, R. and Rahman, M.. Inst. Phys. Conf. Ser. 137, Bristol and Philadelphia, 1994, p. 653.Google Scholar
16. Guy, O.J., Pope, G., Blackwood, I., Teng, K.S., Chen, L., Lee, W.Y., Wilks, S.P., Mawby, P.A., Surface Science 573 (2004) 253263.10.1016/j.susc.2004.09.035Google Scholar
17. Han, S.Y., Lee, J.-L., J. Electrochem. Soc. 149(3) (2002) G189.10.1149/1.1448504Google Scholar
18. La Via, F., Roccaforte, F., Makhtari, A., Raineri, V., Musumeci, P., Calcagno, L., Microelectron. Eng. 60 (2002) 269282.10.1016/S0167-9317(01)00604-9Google Scholar
19. Averback, R.S. and Peak, D., Appl. Phys., A39 (1986) 59.10.1007/BF01177164Google Scholar
20. Park, Jae-Won, Chun, Youngjin, Chang, Jonghwa, Journal of Nuclear Materials, Vol. 362, Issues 2–3 (2007) 268273.10.1016/j.jnucmat.2007.01.129Google Scholar