Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T03:43:29.975Z Has data issue: false hasContentIssue false

Engineering Three Dimensional Nanotextured Opal-Like Silica Foams

Published online by Cambridge University Press:  26 February 2011

Florent Carn
Affiliation:
[email protected], CNRS, Centre de Recherche Paul Pascal, Avenue Albert Schweitzer, PESSAC, Bordeaux, 33600, France, Metropolitan
Pascal Massé
Affiliation:
Serge Ravaine
Affiliation:
Rénal Backov
Affiliation:
Get access

Abstract

Novel meso-/macroporous SiO2 monoliths have been reached by applying a nanotectonic pathway within a confined geometry, i.e. a non-static air-liquid foam patterning process. Final scaffolds are a very close transcription of the tailored periodic air-liquid foam template while coalesced silica particles are texturing the as-synthesized foam walls. The interconnected nanoparticles and associated void space between adjacent particles allow generating intrinsic mesopores, thereby defining hierarchically organized porous scaffolds. The good control over both the air-liquid foam’s water volume fraction and the bubble size allow a rational tuning of the macropore shape (diameter, Plateau border’s width). In contrast with previous study, closed-cell structures can be reached, while the opal like scaffold structure is maintained with thermal treatment, avoiding thus strong shrinkage associated to the sintering effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., Nature, 1992, 359, 710.Google Scholar
2 Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J., Chem. Rev. 2002, 102, 4093.Google Scholar
3 Gibson, L.J., Ashby, M.F., In Cellular solids: structure and properties, Cambridge University Press, 2001.Google Scholar
4 Freynman, T.M., Yannas, I.V., Gibson, L.J., Prog. Mat. Sci. 2000, 46, 273.Google Scholar
5 Hlatky, G.G., Chem. Rev. 2000, 100, 1347.Google Scholar
6 Xia, Y., Gates, B., Yin, Y., Lu, Y., Adv. Mater. 2000, 12, 693.Google Scholar
7 Velev, O.D., Jede, T.A., Lobo, R.F., Lenhoff, A.M., Nature 1997, 389, 448;Google Scholar
Davis, S.A., Breulmann, M., Rhodes, K.H., Zhang, B., Mann, S., Chem. Mater. 2001, 13, 3218;Google Scholar
Smatt, J.H., Schunk, S., Linden, M., Chem. Mater. 2003, 15, 2354;Google Scholar
Moon, J.H., Kim, S., Yi, G.R., Lee, Y.H., Yang, S.M., Langmuir 2004, 20, 2033;Google Scholar
Kamp, U., Kitaev, V., Freinmann, G., Ozin, G.A., Mabury, S.A., Adv. Mater. 2005, 17, 438;Google Scholar
Yan, S.A., Goedel, W.A., Angew. Chem. Int. Ed. 2005, 44, 2084;Google Scholar
Li, F., Badel, X., Linnros, J., Wiley, J.B., J. Am. Chem. Soc. 2005, 127, 3268.Google Scholar
8 Masse, P., Ravaine, S., Chem. Mater. 2005, 17, 4244.Google Scholar
9 Imhof, A., Pine, D.J., Adv. Mater. 1998, 10, 697.Google Scholar
10 Binks, B.P., Adv. Mater. 2002, 14, 1824.Google Scholar
11 Carn, F., Colin, A., Achard, M.F., Deleuze, H., Sellier, E., Birot, M., Backov, R., J. Mater.Chem. 2004, 14, 1.Google Scholar
12 Chandrappa, G.T., Steunou, N., Livage, J., Nature, 2002, 416, 702.Google Scholar
13 Maekawa, H., Esquena, J., Bishop, S., Solans, C., Chmelka, B.F., Adv. Mater. 2003, 15, 591.Google Scholar
14 Huerta, L., Guillem, C., Latorre, J., Beltran, A., Beltran, D., Amoros, P., Chem. Commun., 2003, 1448.Google Scholar
15 Carn, F., Colin, A., Achard, M.F., Deleuze, H., Saadi, Z., Backov, R., Adv. Mater. 2004, 16, 140.Google Scholar
16 Walsh, D., Kulak, A., Aoki, K., Ikoma, T., Tanaka, J., Mann, S., Angew. Chem. Int. Ed. 2004, 43, 6691.Google Scholar
17 Brinker, C.J., Sherer, G.W., in Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing, Academic Press, San Diego, 1990.Google Scholar
18 Gunes, D.Z., Munch, J.P., Dorget, M., Knaebel, A., Lequeux, F., J. Colloid Interface Sci. 2005, 286, 564.Google Scholar
19 Sing, K.S.W., Everett, D.H., R.A.W. Haul, Moscou, L., Pierotti, R.A., Rouquérol, J., Siemieniewska, T.,. Pure Appl. Chem. 1985, 57, 603.Google Scholar
20 Greg, S.J., Sing, K.S.W, In Adsorption, Surface area and Porosity; Academic Press: New York, 1982.Google Scholar