No CrossRef data available.
Article contents
Engineering Three Dimensional Nanotextured Opal-Like Silica Foams
Published online by Cambridge University Press: 26 February 2011
Abstract
Novel meso-/macroporous SiO2 monoliths have been reached by applying a nanotectonic pathway within a confined geometry, i.e. a non-static air-liquid foam patterning process. Final scaffolds are a very close transcription of the tailored periodic air-liquid foam template while coalesced silica particles are texturing the as-synthesized foam walls. The interconnected nanoparticles and associated void space between adjacent particles allow generating intrinsic mesopores, thereby defining hierarchically organized porous scaffolds. The good control over both the air-liquid foam’s water volume fraction and the bubble size allow a rational tuning of the macropore shape (diameter, Plateau border’s width). In contrast with previous study, closed-cell structures can be reached, while the opal like scaffold structure is maintained with thermal treatment, avoiding thus strong shrinkage associated to the sintering effect.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 901: Symposium R – Assembly at the Nanoscale – Toward Functional Nanostructured Materials , 2005 , 0901-Ra22-20-Rb22-20
- Copyright
- Copyright © Materials Research Society 2006