Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:12:51.317Z Has data issue: false hasContentIssue false

Engineered Bone-Inspired Multicomponent Bionanocomposite Scaffolds with Tunable Hardness and Modulus

Published online by Cambridge University Press:  12 June 2012

Matthew Labriola
Affiliation:
Center for Nano Science and Technology (NDnano), Department of Electrical Engineering, University of Notre Dame, IN 46556, U.S.A.
Constance Slaboch
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
Timothy C. Ovaert
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
Tao Wang
Affiliation:
Center for Nano Science and Technology (NDnano), Department of Electrical Engineering, University of Notre Dame, IN 46556, U.S.A.
George Csaba
Affiliation:
Center for Nano Science and Technology (NDnano), Department of Electrical Engineering, University of Notre Dame, IN 46556, U.S.A.
Ilker S. Bayer
Affiliation:
Center for Biomolecular Nanotechnologies, Smart Materials Platform, Italian Institute of Technology, Lecce 73010, Italy.
Enkeleda Dervishi
Affiliation:
Nanotechnology Center, Applied Science Department, University of Arkansas at Little Rock, AR 72204, U.S.A.
Alexandru S. Biris
Affiliation:
Nanotechnology Center, Applied Science Department, University of Arkansas at Little Rock, AR 72204, U.S.A.
Anindya Ghosh
Affiliation:
Department of Chemistry, University of Arkansas at Little Rock, AR 72204, USA.
Rajeev Gupta
Affiliation:
Department of Physics, University of Petroleum and Energy Studies, Dehradun-248007, India.
Abhijit Biswas*
Affiliation:
Center for Nano Science and Technology (NDnano), Department of Electrical Engineering, University of Notre Dame, IN 46556, U.S.A.
*
*Corresponding Author: [email protected]
Get access

Abstract

We show a novel, bioengineered, moldable platform for bone regeneration composed of porous bionanocomposite scaffolds made of components that are normally found in bone tissue (calcium, collagen, carbonate, sodium, and phosphorous). To accommodate high- or low-stress environments, the hardness and modulus (stiffness) of these scaffolds can be tuned in a wide range in Megapascal (MPa) to Gigapascal (GPa) regions, while maintaining the required viscoelasticity. Our approach to control the mechanical properties is based on a new formulation of mineralized bioscaffolds by incorporation of calcium carbonate in which, calcium and phosphorous are in the form of calcite, calcium polyphosphate (CPP) and hydroxyapatite (HAP). The variation in the calcium carbonate concentration allows tuning of calcite/CPP contents in the bioscaffold to tailor the degree of mineralization and mechanical and viscoelastic properties that closely match those of natural bone. Our results demonstrate an ideal framework for new bone scaffold designs for advanced bone substitute applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Nanotechnology Undergraduate Research Fellow (NURF)

References

REFERENCES

1. Murugan, R., Ramakrishna, S., Compos. Sci. Technol. 65, 2385 (2005).10.1016/j.compscitech.2005.07.022Google Scholar
2. Seto, J., Gupta, H. S., Zaslansky, P., Wagner, H. D., Fratzl, P., Adv. Funct. Mater. 18, 1905 (2008).10.1002/adfm.200800214Google Scholar
3. Weiner, S., Wagner, H. D., Annu. Rev. Mater. Sci. 28, 271 (1998).10.1146/annurev.matsci.28.1.271Google Scholar
4. Giraud-Guille, M. M., Calcif. Tissue Int. 42, 167 (1988).10.1007/BF02556330Google Scholar
5. Traub, W., Arad, T., Weiner, S., Proc. Natl. Acad. Sci. U.S.A. 86, 9822 (1989).10.1073/pnas.86.24.9822Google Scholar
6. Hule, R. A., Pochan, D. J., MRS Bulletin 32, 354 (2007).10.1557/mrs2007.235Google Scholar
7. Hollister, S. J., Nat. Mat. 4, 518 (2005).10.1038/nmat1421Google Scholar
8. Biswas, Abhijit, Biris, Alexandru S. and Bayer, Ilker S. (2012). Bone-Inspired Multicomponent Bionanocomposites with a Simple Drop-Cast Processing Strategy. MRS Proceedings, 1355, mrss11-1355-jj10-12 doi:10.1557/opl.2011.1138.Google Scholar
9. NIH Consensus Panel. “The Orthopedic Form NIH Consensus Statement on Total Knee Replacement December 8-10, 2003”, The Journal of Bone and Joint Surgery 86, 1328 (2004).Google Scholar
10. Liu, Y. L, Schoenaers, J., De Groot, K., De Wijn, J. R., Schepers, E., J. Mater. Sci.- Mater. Med. 11, 711 (2000).10.1023/A:1008971611885Google Scholar
11. Biswas, A., Bayer, I. S., Zhao, He, Wang, T., Watanabe, F., Biris, A. S., Biomacromolecules 11, 2545 (2010).10.1021/bm1009359Google Scholar
12. Darder, M., Aranda, P., Ruiz-Hitzky, E., Adv. Mater. 19, 1309 (2007).10.1002/adma.200602328Google Scholar
13. Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., Tanaka, J., J. Biomed. Mater. Res. 55, 20 (2001).10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F3.0.CO;2-F>Google Scholar
14. Zysset, K. P., Guo, E. X., Hoffer, E. C., Moore, E. K., Goldstein, A. S., J. Biomech. 32, 1005 (1999).10.1016/S0021-9290(99)00111-6Google Scholar
15. Bekah, S., Rabiei, R., Barthelat, F., BioNanoSci, 1, 53 (2011).10.1007/s12668-011-0008-3Google Scholar
16. Biswas, A. et al. ., to be published.Google Scholar