Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T00:55:55.614Z Has data issue: false hasContentIssue false

Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate

Published online by Cambridge University Press:  21 February 2012

Celal Yelgel
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, U.K.
Gyaneshwar P. Srivastava
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, U.K.
Get access

Abstract

The equilibrium geometry and electronic structure of graphene deposited on a multilayer hexagonal boron nitride (h-BN) substrate has been investigated using the density functional and pseudopotential theories. We found that the energy band gap for the interface between a monolayer graphene (MLG) and a monolayer BN (MLBN) lies between 47 and 62 meV, depending on the relative orientations of the layers. In the most energetically stable configuration the binding energy is found to be approximately 40 meV per C atom. Slightly away from the Dirac point, the dispersion curve is linear, with the electron speed almost identical to that for isolated graphene. The dispersion relation becomes reasonably quadratic for the interface between MLG and 4-layer-BN, with a relative effective mass of 0.0047. While the MLG/MLBN superlattice is metallic, the thinnest armchair nanoribbon of MLG/MLBN interface is semiconducting with a gap of 1.84 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., and Novoselov, K. S., Science 323, 610 (2009).Google Scholar
2. Zhou, S. Y., Gweon, G. H., Fedorov, A. V., First, P. N., De Heer, W. A., Lee, D. H., Guinea, F., Castro Neto, A. H., and Lanzara, A., Nature Mater. 6, 770 (2007).Google Scholar
3. Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J., and van den Brink, J., Phys. Rev. B 76, 073103 (2007).Google Scholar
4. Slawinska, J., Zasada, I., and Klusek, Z., Phys. Rev. B 81, 155433 (2010).Google Scholar
5. Fan, Y., Zhao, M., Wang, Z., Zhang, X., and Zhang, H., Appl. Phys. Lett. 98, 083103 (2011).Google Scholar
6. Berashevich, J. and Chakraborty, T., Phys. Rev. B 80, 033404 (2009).Google Scholar
7. Han, W. Q., Wu, L., Zhu, Y., Watanabe, K., and Taniguchi, T., Appl. Phys. Lett. 93, 223103 (2008).Google Scholar
8. Alem, N., Erni, R., Kisielowski, C., Rossell, M. D., Gannett, W., and Zettl, A., Phys. Rev. B 80, 155425 (2009).Google Scholar
9. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nat. Nanotech. 5, 722 (2010).Google Scholar
10. Dean, C. R., Young, A. F., Cadden-Zimansky, P., Wang, L., Ren, H., Watanabe, K., Taniguchi, T., Kim, P., Hone, J., and Shepard, K. L., Nature Physics 7, 693 (2011).Google Scholar
11. Usachov, D., Adamchuk, V. K., Haberer, D., Gruneis, A., Sachdev, H., Preobrajenski, A. B., Laubschat, C., and Vyalikh, D. V., Phys. Rev. B 82, 075415 (2010).Google Scholar
12. Bjelkevig, C., Mi, Z., Xiao, J., Dowben, P. A., Wang, L., Mei, W. N., and Kelber, J. A., J. Phys.: Condens. Matter 22, 302002 (2010)Google Scholar
13. Das Sarma, S. and Hwang, E. H., Phys. Rev. B 83, 121405 (2011).Google Scholar
14. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
15. Gonze, X., Stumpf, R., and Scheffler, M., Phys. Rev. B 44, 8503 (1991).Google Scholar
16. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5189 (1976).Google Scholar
17. Zhang, Y., Tang, T., Girit, C., Hao, Z., Martin, M. C., Zett, A., Crommie, M. F., Shen, Y. R., and Wang, F., Nature 459, 820 (2009).Google Scholar
18. Castro, E. V., Novoselov, K. S., Morozov, S. V., Peres, N. M. R., Lopes dos Santos, J. M. B., Nilsson, J., Guinea, F., Geim, A. K., and Castro Neto, A. H., J. Phys.: Condens. Matter 22, 175503 (2010).Google Scholar
19. Yelgel, C. and Srivastava, G. P., Appl. Surf. Sci. 258 (2012) (in press).Google Scholar