Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:15:22.086Z Has data issue: false hasContentIssue false

Energy Band Engineering for Improved Vertical Transport in Quantum Structured III-V p-i-n Solar Cells

Published online by Cambridge University Press:  01 February 2011

Andenet Alemu
Affiliation:
[email protected], University of Houston, Center for Advanced Materials, 724 Science & Research Building 1, Houston, TX, 77204-5002, United States, 7137433621, 7137477724
Alex Freundlich
Affiliation:
[email protected], University of Houston, Photovoltaics and Nanostructures Laboratories, Center for Advanced Materials, 724 Science & Research Building 1, Houston, TX, 77204-5002, United States
Get access

Abstract

The use of InGaAsN and GaBiAsN quantum structures in the intrinsic region of conventional III-V p-i-n solar cells, lattice matched to GaAs, presents several advantages for photovoltaic (PV) application. First they allow for very shallow to zero valence band offsets thus permitting the free movement of holes. Second, a wide range of band-gap values are made possible due to the large band gap decrease upon the introduction of minute amounts of N and Bi. Using band structure calculations that include the strain effects, conduction and valence band anti-crossing models describing the large band gap bowing and the transfer matrix method, we present the theoretical investigation of optimum design conditions for enhanced vertical transport. The direct quantum mechanical resonant tunneling of electrons out of the quantum structures and into the continuum of the conduction band of the host semiconductor material can be facilitated provided that an adequate choice of material parameters is made. The high electron transmission probability together with the free movement of quasi-3 D holes is predicted to result in enhanced PV device performance. Furthermore, the increase in electron effective mass due to the incorporation of N translates in enhanced absorptive properties, ideal for PV application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Luque, Antonio and Martí, Antonio, Phys. Rev. Lett. 78, 50145017 (1997)10.1103/PhysRevLett.78.5014Google Scholar
2. Werner, J̈rgen H., Kolodinski, Sabine, and Queisser, Hans J., Phys. Rev. Lett. 72, 38513854 (1994)Google Scholar
3. Green, Martin A, Nanotechnology 11, 401405 (2000)10.1088/0957-4484/11/4/342Google Scholar
4. Peng, R. W., Mazzer, M., and Barnham, K. W. J., Appl. Phys. Lett. 83, 770772 (2003)10.1063/1.1592881Google Scholar
5. Shockley, William and Queisser, Hans J., J. Appl. Phys. 32, 510519 (1961)10.1063/1.1736034Google Scholar
6. Barnham, K. W. J. and Duggan, G., J. Appl. Phys. 67, 3490 3493 (1990)10.1063/1.345339Google Scholar
7. Raisky, O. Y., Wang, W. B., and Alfano, R. R., Reynolds, C. L. Jr, Stampone, D. V., and Focht, M. W., Appl. Phys. Lett., Vol. 74, No. 1, 4 January 1999 Google Scholar
8. Freundlich, A. and Alemu, A., Multi Quantum Well Multijunction Solar Cells for Space Applications, Phys.Stat. Sol. (c), 2 (8), pp 29782981 (2005)Google Scholar
9. Weyers, Markus and Sato, Michio, Appl. Phys. Lett. 62 (12) pp.1396 (1993)10.1063/1.108691Google Scholar
10. Bhusal, L, Alemu, A. and Freundlich, A, Nanotechnology 15 (2004) S245–S24910.1088/0957-4484/15/4/024Google Scholar
11. Coaquira, J.A.H., bhusal, L., Zhu, W., Fotkatzikis, A., Pinault, M.-A., Litvinchuk, A. P. and Freundlich, A., proceedings of the Fall MRS conference (2004)Google Scholar
12. Pinault, M. A., Freundlich, A., Coaquira, J. A. H., and Fotkatzikis, A., J. Appl. Phys. 98, 023522 (2005)10.1063/1.1996853Google Scholar
13. Freundlich, A., Fotkatzikis, A., Bhusal, L., Williams, L., Alemu, A., Zhu, W., Coaquira, J.A.H., Feltrin, A. and Radhakrishnan, G., J. Cryst. Growth, 301–302 pp 993996 (2007)10.1016/j.jcrysgro.2006.11.256Google Scholar
14. Kitatani, Takeshi, Kondow, Masahiko, Kikawa, Takeshi, Yazawa, Yoshiaki, Okai, Makoto, and Uomi, Kazuhisa, Jap. J. Appl. Phys. 38, 9A (1999) pp. 5003 10.1143/JJAP.38.5003Google Scholar
15. Alberi, K., Wu, J., Walukiewicz, W., Yu, K. M., Dubon, O. D., Watkins, S. P., Wang, C. X., Liu, X., Y.-J. Cho, and Furdyna, J., Phys. Rev. B 75, 045203 (2007)10.1103/PhysRevB.75.045203Google Scholar
16. Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., and Tiedje, T., Appl. Phys. Lett., Vol. 82 (22), 38743876 (2003)10.1063/1.1581983Google Scholar
17. Huanga, Wei, Oe, Kunishige, Feng, Gan and Yoshimotob, Masahiro, J. Appl. Phys. 98, 053505 (2005)10.1063/1.2032618Google Scholar
18. Shan, W., Walukiewicz, W., and Ager, J. W. III, Phys. Rev. Lett. 82, 12211224 (1999)10.1103/PhysRevLett.82.1221Google Scholar
19. Raisky, O. Y., Wang, W. B., Alfano, R. R., Reynolds, C. L. Jr, and Swaminathana, V., J. Appl. Phys. 81 (1), 1 January 1997 10.1063/1.364070Google Scholar
20. Fox, M., Miller, D. A. B., Livescu, G., Cunningham, J. E. and Jan, W. Y., IEEE J. Quantum Electron., vol. 27, pp. 22812295, 1991 Google Scholar
21. Alemu, A., Coaquira, J. A. H. and Freundlich, A., J. Appl. Phys. 99, 084506 (2006)Google Scholar