Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T08:29:38.279Z Has data issue: false hasContentIssue false

Energetics of mer/fac isomers in metal tris(8-hydroxyquinoline) chelates: Implications on charge conduction in organic light-emitting devices

Published online by Cambridge University Press:  15 February 2011

Kim F. Ferris
Affiliation:
Materials Science Division Pacific Northwest National Laboratory Richland, WA 99352
Linda S. Sapochak
Affiliation:
Materials Science Division Pacific Northwest National Laboratory Richland, WA 99352
Deanna Rodovsky
Affiliation:
Materials Science Division Pacific Northwest National Laboratory Richland, WA 99352
Paul E. Burrows
Affiliation:
Materials Science Division Pacific Northwest National Laboratory Richland, WA 99352
Get access

Abstract

Electronic structure calculations for the mer and fac-isomers of aluminum tris (8-hydroxyquinoline) (Alq3) and the methyl-substituted series, nMeq3Al (n = 3 - 7) are presented. From these data, we estimate their relative abundances in Alq3 thin films and the resultant trap state energies. Ab initio computations performed at the SCF level suggest a significantly higher stability (6 - 7.5 kcal/mol) of the mer-isomer over the facial form, whereas MP2 treatment of electron correlation effects lowers the difference to (4 - 4.5 kcal/mol). Substitution of the Al+3 metal ion with the larger ions Ga+3 and In+3 increases the energetic preference of the meridianal form by 2.7 kcal/mol and decreases it by 0.8 kcal/mol, respectively. Trap state energies calculated by previously proposed methodologies show little difference between mer and fac trap states. These results suggest that the existence of the facial isomer in thin films of metal trisquinolates is unlikely to significantly affect charge conduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C.W. and Van Slyke, S.A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Curioni, A., Boero, M., Andreoni, W., Chem. Phys. Lett. 294, 263 (1998).Google Scholar
3. Kushto, G.P., Iizumi, Y., Kido, J., and Kafafi, Z.H., J. Phys. Chem. 104, 3670 (2000).Google Scholar
4. Utz, M., Chen, C., Martin, M., Papadimitrakopoulos, F., J. Am. Chem. Soc. 125, 1371 (2003).Google Scholar
5. Schmidt, M.W., Galdridge, K.K., Boatz, J.A., Elbert, S.T., M.S.Gordon, Jensen, J.J., Koseki, S., Matsunagea, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montogomery, J.A., J. Comput. Chem. 14, 1347 (1993).Google Scholar
6. Granovsky, A.A., www.http://classic.chem.msu.su/gran/gamess/index.html.Google Scholar
7. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys. 54, 724 (1971). W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972).M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S Gordon, D.J. DeFrees, J.A. Pople, J.Chem. Phys. 77, 3654 (1982).Google Scholar
8. Hariharan, P.C. and Pople, J.A., Theor. Chim. Acta 28, 213 (1973).Google Scholar
9. Stevens, W.J., Basch, H., Krauss, M., J. Chem. Phys. 81, 6026 (1984). W.J. Stevens, H. Basch, M. Drauss, P. Jasien, Can. J. Chem. 70, 612 (1992). T.R. Cundari, W.J. Stevens, J. Chem. Phys. 98, 5555 (1993).Google Scholar
10. Spartan 02 Version 1.0.2 Wavefunctions, Inc., Irvine, CA.Google Scholar
11. HyperChem, Version 6.03, Hypercube, Inc., Gainesville, FL. Google Scholar
12. Martin, R.L., Kress, J.D., Campbell, I.H., Smith, D.L., Phys. Rev. B 61, 15804 (2000).Google Scholar
13. Schmidbauer, H., Lattenbauer, J., Dallas, L., Muller, W.G., Kumberger, O., Z. Naturforsh, 46b, 901 (1991).Google Scholar
14. Addy, P., Evans, D., Sheppard, R., Inorg. Chim. Acta 127, L19 (1987).Google Scholar