Published online by Cambridge University Press: 26 February 2011
Metal complexes of the energetic high-nitrogen ligand, bistetrazole amine (BTA) were ignited in inert environments and their decomposition characteristics were determined. These molecules were found to have the unique properties of a comparatively slow burning rate with very little pressure dependency, unlike most energetic, metal-containing molecules which tend to detonate, rather than burn steadily. This process resulted in unprecedented ultra-low-density, nano-structured, transition metal monoliths, useful as a self-propagating combustion synthesis technique. The resulting nanostructured metal monolithic foams formed in the post flame-front dynamic assembly have remarkably low densities down to 0.011 g cm-3 and extremely high surface areas as high as 270 m2 g-1. In this work we discuss primary the production of iron monoliths, however have produced monolithic nano-porous metal foams via this method with cobalt, copper and silver metals as well. We expect to be able to apply this to many other metals and to be able to tailor the resulting structure significantly.