Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:35:16.115Z Has data issue: false hasContentIssue false

Embedded - Atom - Method Interatomic Potentials for BCC - Iron

Published online by Cambridge University Press:  01 January 1992

G. Simonelli
Affiliation:
Departamento de Materiales, Comisión Nacional de Energía Atómica, Av. Libertador 8250, (1429) Buenos Aires, Argentina.
R. Pasianot
Affiliation:
Departamento de Materiales, Comisión Nacional de Energía Atómica, Av. Libertador 8250, (1429) Buenos Aires, Argentina.
E.J. Savino
Affiliation:
Departamento de Materiales, Comisión Nacional de Energía Atómica, Av. Libertador 8250, (1429) Buenos Aires, Argentina.
Get access

Abstract

An embedded-atom-method (EAM) interatomic potential [1] for bcc-iron is derived. It is fitted exactly to the lattice parameter, elastic constants, an approximation to the unrelaxed vacancy formation energy, and Rose's expression for the cohesive energy [2]. Formation energies and relaxation volumes of point defects are calculated. We find that the relative energies of the defect configurations depend on the functional fitting details of the potential considered, mainly its range: the experimental interstitial configuration of lowest energy can be reproduced by changing this parameter. This result is confirmed by calculating the same defect energies using other EAM potentials, based on the ones developed by Harrison et al. [3].

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Daw, M.S., Baskes, M.I., Phys.Rev.B, 29, 6443 (1984).Google Scholar
2. Rose, J.H., Smith, J.R., Guinea, F., Ferrante, J., Phys.Rev.B, 29, 2963 (1984).Google Scholar
3. Harrison, R.J., Voter, A.F., Chen, S.P., Atomistic Simulation of Materials, edited by Vitek, V. and Srolovitz, D.J. (Plenum, N.Y., 1989), p. 219.Google Scholar
4. Finnis, M.W., Sinclair, J.E., Philos.Mag.A, 50, 45 (1984).Google Scholar
5. Pasianot, R., Farkas, D., Savino, E.J., Phys.Rev.B, 43, 6952 (1991).Google Scholar
6. Baskes, M.I., Nelson, J.S., Wright, A.F., Phys.Rev.B, 40, 6085 (1989).Google Scholar
7. Johnson, R.A., Oh, D.J., J.Mater.Res. 4, 1195 (1989).Google Scholar
8. Ackland, G.J., Thetford, R., Philos.Mag.A, 56, 15 (1987).Google Scholar
9. Rebonato, R., Welch, D.O., Hatcher, R.D., Bilello, J.C., Philos.Mag.A, 55, 655 (1987).Google Scholar
10. Ackland, G.J., Tichy, G., Vitek, V., Finnis, M.W., Phil.Mag.A, 56, 735 (1987).Google Scholar
11. Kittel, C., Introduction to Solid State Physics, 4th. ed. (Wiley, N.Y., 1971).Google Scholar
12. Hirth, J.P., Lothe, J., Theory of Dislocations, 2nd. ed. (Wiley & Sons, 1982).Google Scholar
13. Norgett, M.J., Perrin, R.C., Savino, E.J., J.Phys.F, 2, L73 (1972).Google Scholar
14. Schober, H.R., Ingle, K.W., J.Phys.F, 10, 575 (1980).Google Scholar
15. Leibfried, G., Breuer, N., Point Defects in Metals I, Springer Tracts in Modern Phys. (Springer Verlag, Berlin, 1978).Google Scholar
16. Johnson, R.A., Phys.Rev. 134(5A), 1329 (1964).Google Scholar
17. Harder, J.M., Bacon, D.J., Philos.Mag.A, 54, 651 (1986).Google Scholar
18. Chambron, W., Verdone, J., Moser, P., Fundamental Aspects of Radiation Damage in Metals, edited by Robinson, and Young, (Proc. of Intern. Conf. at Gatlinburg, Tennessee, 1975), p. 261. Google Scholar
19. Adams, J.B., Foiles, S.M., Phys.Rev.B, 41, 3316 (1990).Google Scholar
20. Ehrhart, P., J.nuc.Mater. 6970, 200 (1978).Google Scholar
21. Johnson, R.A., Phys.Rev.B, 27, 2014 (1983).Google Scholar