Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:33:57.947Z Has data issue: false hasContentIssue false

Ellipsometry Studies of (μc-Si:H/ZnO) and (μc-Si:H/a-Si:H) Interfaces in Magnetron Sputtering System

Published online by Cambridge University Press:  01 January 1993

Y.H. Yang
Affiliation:
Coordinated Science Laboratory and Department of Materials Science and Engineering,, University of Illinois, Urbana, IL 61801
M. Katiyar
Affiliation:
Coordinated Science Laboratory and Department of Materials Science and Engineering,, University of Illinois, Urbana, IL 61801
J.R. Abelson
Affiliation:
Coordinated Science Laboratory and Department of Materials Science and Engineering,, University of Illinois, Urbana, IL 61801
N. Maley
Affiliation:
Thin Film Division, Solarex Corporation, 826 Newtown-Yardley Road,, Newtown, PA 18940.
Get access

Abstract

We have studied the microstructure of μc-Si:H/ZnO and μc-Si:H/a-Si:H interfaces in reactive magnetron sputtering (RMS) using in situ spectroscopic ellipsometry (SE). For (μc- Si:H deposited on ZnO, the real time ellipsometry trajectory shows that there is 20 volume % void apparent inside the first 100Å film. Then the film becomes densified, the initial void layer propagates as a surface layer, and its thickness decreases to 53Å when the bulk film reaches 200Å. Both unhydrogenated and hydrogenated silicon films deposited on ZnO show similar nucleation and coalescence behavior. This indicates that the atomic hydrogen rich plasma under μc-Si growth conditions doesn't reduce the ZnO substrate. For the μc-Si:H/a-Si:H study, we also observe the delayed crystallite nucleation after a ∼ 100Å high H content interface layer forms. Part of this layer results from H implanted into the a-Si:H substrate (∼ 45Å deep). The thickness of this interface layer decreases as the crystallite nucleation begins. This is the first direct experimental evidence showing sub-surface μc-Si:H formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guha, S. Yang, J., Nath, P., and Hack, M., Appl. Phys. Lett. 49, 218 (1986)Google Scholar
2. Hamasaki, T., Kurata, H., Hirose, M., and Osaka, Y., Appl. Phys. Lett 37, 1084 (1984).Google Scholar
3. Yang, Y. H.,Feng, G. F., Katiyar, M., Maley, N.and Abelson, J. R., J. Vac. Sci. Technol A (in press).Google Scholar
4. Collins, R. W., and Yang, B. Y., J. Vac. Sci. Technol. B 7, 1155 (1989).Google Scholar
5. Feng, G. F., Katiyar, M., Maley, N. and Abelson, J. R., in Amorphous Silicon Technology-1991. edited by Hamakawa, , Y., Thompson, M. J., Taylor, P. C., and LeComber, P. G. (Mater. Res. Soc. Proc, 219, Anaheim, CA, 1991) pp. 709714.Google Scholar
6. Yang, Y. H. (unpublished).Google Scholar
7. Collins, R. W., in Advances in Amorphous Semiconductors, edited by Fritzsche, H.(World Scientific, Singapore, 1989), pp. 1003.Google Scholar
8. Kumar, S. and Drevillon, B., J. Appl. Phys. 65, 3023 (1989).Google Scholar
9.Feng, G. F., Katiyar, M., Yang, Y. H.,Abelson, J. R. and Maley, N., in Amorphous Silicon Technology-1992. edited by Thompson, M. J., Hamakawa, Y.,LeComber, P. G., Madan, A., and Schiff, E. (Mater. Res. Soc. Proc. 258, San Francisco, CA, 1992) pp. 179184.Google Scholar
10 Feng, G. F., Katiyar, M.,Abelson, J. R. and Maley, N., Phys. Rev. B, 45, 9013 (1992).Google Scholar
11 Abelson, J. R., Maley, N., Doyle, J. R., Feng, G. F., Fitzner, M., Katiyar, M., Mandrell, L., Myers, A. M., Nuruddin, A., Ruzic, D. N., and Yang, S., in Ref. 5, pp. 619630.Google Scholar
12 Katiyar, M., Feng, G. F., Yang, Y. H., Maley, N. and Abelson, J. R. (unpublished).Google Scholar