Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T05:38:04.694Z Has data issue: false hasContentIssue false

Elimination of Microtwins in Mbe-Grown Silicon on Sapphire

Published online by Cambridge University Press:  28 February 2011

M. E. Twigg
Affiliation:
GEO-Centers, Inc., Prospect Square Building, 10903 Indian Head Highway, Suite 502, Fort Washington, MD 20744
E. D. Richmond
Affiliation:
Naval Research Laboratory, Code 6816, Washington, D. C. 20375-5000
J. G. Pellegrino
Affiliation:
Naval Research Laboratory, Code 6816, Washington, D. C. 20375-5000
Get access

Abstract

We have examined a number of MBE-grown (001) silicon thin films grown on (1012) sapphire substrates using transmission electron microscopy. We have found that for silicon films less than 0.55μm thick, microtwins are very much in evidence. For silicon films greater than 700nm thick, however, dislocations, rather than microtwins, are the predominant defect. It is our conjecture that the generation of dislocations, and the associated disappearance of microtwins in thicker MBE-grown SOS films, is analogous to the generation of misfit dislocations in silicon-germanium films grown on silicon or germanium substrates by MBE. The persistence of microtwins in CVD-grown SOS, as opposed to MBE-grown SOS, can be understood in terms of Dodson and Tsao's formulation of the kinetics of plastic flow in thin germanium-silicon films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984).Google Scholar
2. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
3. Tsao, J. Y., Dodson, B. W., Picraux, S. T., and Cornelison, D. M., Phys. Rev. Lett. 59, 848 (1987).Google Scholar
4. Tsao, J. Y. and Dodson, B. W., Appl. Phys. Lett. 53, 848 (1988).CrossRefGoogle Scholar
5. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
6. Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1325 (1987); 52, 852 (1988).Google Scholar
7. Pellegrino, J. G., Twigg, M. E., and Richmond, E. D. in Silicon on Insulator and Burried Metals in Semiconductors, edited by Chen, C. K., Hemment, P. L. F., Sturm, J. C., and Pfeiffer, L. (Mater. Res. Soc. Proc. 107, Pittsburgh, PA 1988) pp. 383388.Google Scholar
8. Pellegrino, J. G., Richmond, E. D., and Twigg, M. E. in Heteroepitaxy in Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988) pp. 389395; J. G. Pellegrino, S. Qadri, M. E. Twigg, E. D. Richmond, and C. L. Vold, ibid., pp. 395-400.Google Scholar
9. Twigg, M. E., Richmond, E. D., and Pellegrino, J. G., submitted to Appl. Phys. Lett.Google Scholar
10. Abrahams, M. S. and Buiocchi, C. J., Appl. Phys. Lett. 27, 325 (1975).Google Scholar
11. Twigg, M. E. and Richmond, E. D., J. Appl. Phys. 64, 3037 (1988).Google Scholar
12. Yasutake, K., Shimizu, S., Umeno, M., and Kawabe, H., J. Appl. Phys. 61, 940 (1987); 61, 947 (1987).Google Scholar
13. Dodson, B. W. and Tsao, J. Y., Phys. Rev., to be publishedGoogle Scholar
14. Dodson, B. W. and Fritz, I. J., in Compound Semiconductor Strained-Layer Superlattices, edited by Biefeld, R. M., to be published.Google Scholar
15. Twigg, M. E., Richmond, E. D., and Pellegrino, J. G., to be published.Google Scholar
16. Nolder, R. L. and Cadoff, I. B., Trans. Metall. Soc. AIME 233, 549 (1965).Google Scholar
17. Aindow, M., Batstone, J. L., Pfeiffer, L., Phillips, J. M., and Pond, R. C., these proceedings.Google Scholar
18. Ponce, F. A., Appl. Phys. Lett. 41, 371 (1982).Google Scholar