Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:30:31.494Z Has data issue: false hasContentIssue false

Element Specific Vector Magnetometry (Esvm) Via Soft X-Ray Magnetic Circular Dichroism

Published online by Cambridge University Press:  15 February 2011

V. Chakarian
Affiliation:
Naval Research Laboratory, Code 6345, Washington, DC 20375 USA
H.-J. Lin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 USA
Y. U. Idzerda
Affiliation:
Naval Research Laboratory, Code 6345, Washington, DC 20375 USA
E. E. Chaban
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 USA
G. Meigs
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 USA
J.-H. Park
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 USA
C. J. Gutierrez
Affiliation:
Naval Research Laboratory, Code 6345, Washington, DC 20375 USA
G. A. Prinz
Affiliation:
Naval Research Laboratory, Code 6345, Washington, DC 20375 USA
C. T. Chen
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 USA
Get access

Abstract

Soft X-Ray Magnetic circular dichroism (SX-MCD) can be used to obtain element-specific magnetic hysteresis curves and to elucidate the two- and three-dimensional magnetization reversal processes for each constituent magnetic element of a heteromagnetic system. As a demonstration, two systems which exhibit in-plane magnetization reversal are studied: a thin Fe (100) singlecrystal film and a Fe1-xCox/Mn/Fel-xCox trilayer. The results for both systems show that the magnetic moment vector reverses via a combination of coherent rotation toward the nearest in-plane magnetically easy axis followed by the formation of orthogonal <100> domains which rapidly sweep across the sample. In the case of the trilayer, the moment reversal process is significantly more complex due to a strong ∼90° coupling between the magnetic moments of the two FeCo layers. By using element-specific vector magnetometry (ESVM), the details of this reversal process are revealed. Furthermore, the results of the SX-MCD for Mn show that Mn possesses a ferromagnetically aligned net magnetic moment which depicts a 2D magnetization behavior different than that for either Fe or Co.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chikazumi, S., Physics of Magnetism (Krieger, Malabar, Florida, 1964).Google Scholar
2. Falicov, L. M., Pierce, D. T., Bader, S. D., Gronsky, R., Hathaway, K. B., Hopster, H. J., Lambeth, D. N., Parkin, S. S. P., Prinz, G., Salamon, M., Schuller, I. K. and Victora, R. H., J. Mater. Res. 5, 1299 (1990), and references therein.Google Scholar
3. Daboo, C., Bland, J. A. C., Hicken, R. J., Ives, A. J. R. and Baird, M. J., Phys. Rev. B 47, 11852 (1993).Google Scholar
4. Chen, C. T., Sette, F., Ma, Y. and Modesti, S., Phys. Rev. B 42, 7262 (1990).Google Scholar
5. Chen, C. T., Idzerda, Y. U., Lin, H.-J., Meigs, G., Chaiken, A., Prinz, G. A. and Ho, G. H., Phys. Rev. B 48, 642 (1993).Google Scholar
6. Chen, C. T., Nucl. Instrum. Methods Phys. Res. A 256, 595 (1987).Google Scholar
7. Chen, C. T. and Sette, F., Rev. Sci. Instrum. 60, 1616 (1989).Google Scholar
8. Chen, C. T., Rev. Sci. Instrum. 63, 1229 (1992).Google Scholar
9. Chakarian, V., Lin, H.-J., Idzerda, Y. U., Meigs, G., Chaban, E., Park, J.-H., Prinz, G. A. and Chen, C. T., to be published.Google Scholar
10. Filipkowski, M. E., private communication.Google Scholar