Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T17:58:24.510Z Has data issue: false hasContentIssue false

Electronic Structures and Nature of Host Excitation in Gallates

Published online by Cambridge University Press:  21 March 2011

P. C. Schmidt
Affiliation:
Institut für Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, Germany
J. Sticht
Affiliation:
Institut für Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, Germany
M. Stephan
Affiliation:
Institut für Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, Germany
V. Eyert
Affiliation:
Institut für Physik, Universität Augsburg, Augsburg, Germany
K. C. Mishra
Affiliation:
Research and Development, OSRAM SYLVANIA, Beverly, MA
Get access

Abstract

It is an interesting exercise in materials science to explore simple rules relating the electronic properties of ternary systems to those of their binary constituents. In the present work, we have investigated the electronic structures of the large band gap gallates MGa2O4(M=Mg, Ca, Ba and Zn) and the corresponding binary oxides MO and Ga2O3. Using first-principles band structure methods, we find that the metal atoms in MO control the width of the O 2p-like valence band and the size of the optical band gap. Covalent metal-oxygen bonding is much more pronounced in Ga2O3 and leads to characteristic structure in the valence band density of states. These basic features are retained in the ternary compounds where the covalent admixture to the chemical bond is largest between Ga and O, and the transitions across the band gap involve the Ga2O3 sublattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minami, T., Takata, S., Kuroi, Y., Maeno, T., Soc. Inf. Dis. Sym. Digest 26, 724 (1995), see references therein.Google Scholar
2. Hoffman, C.W.W., Brown, J.J., J. Inorg. Nucl. Chem. 30, 63 (1968).Google Scholar
3. Schmidt, P.C., Sticht, J., Eyert, V., Mishra, K.C., Mat. Res. Soc. Symp. Proc. 560, 323 (1999)Google Scholar
4. Mishra, K.C., DeBoer, B.G., Schmidt, P.C., Osterloh, I., Stephan, M., Eyert, V., Johnson, K.H., Ber. Bunsenges. Phys. Chem. 102, 1772 (1998).Google Scholar
5. Mishra, K. C., Osterloh, I., Anton, H., Hannebauer, B., Schmidt, P. C., Johnson, K. H., J. Mater. Res. 12, 2183 (1997).Google Scholar
6. Williams, A.R., Kübler, J., Gelatt, C.D. Jr, Phys. Rev. B 19, 6094 (1979).Google Scholar
7. Eyert, V., Int. J. Quant. Chem. 77, 1007 (2000).Google Scholar
8. Methfessel, M., NFP Manual, IHP, Frankfurt (Oder) (1997).Google Scholar
9. Bott, E., Methfessel, M., Krabs, W., Schmidt, P.C., J. Math. Phys. 39, 1 (1998).Google Scholar
10. Gerlach, W., Z. Phys. 9, 184 (1922).Google Scholar
11. Albertsoon, J., Abrahams, S.C., Kvick, A., Acta Cryst. B 39, 34 (1989).Google Scholar
12. Geller, S., J. Solid State Chem. 20, 209 (1977).Google Scholar
13. Barth, T.F.W., Pasnjak, E.Z., Kristallografiya 82, 325 (1932); F. Machatschki, Kristallografiya 82, 348 (1932); H. Schmalzried, Z. Phys. Chem. 28, 203 (1961); J.E. Weidenborner, N.R. Stemple Y. Okaya, Acta Crystallogr. 20, 761 (1966).Google Scholar
14. Casado, P.G., Rasines, I., Z. Kristallogr. 160, 33 (1982).Google Scholar
15. Deiseroth, H.J., Müller-Buschbaum, H.K., Z. anorg. Chem. 387, 154 (1972); H.J. Deiseroth, H.K. Müller-Buschbaum, Z. anorg. Chem. 396, 157 (1973); J. Jevaratham, F.P. Glasser, J. Amer. Ceram. Soc. 44, 563 (1961); J. Jevaratham, F.P. Glasser, L.S. Dent Glasser, Z. Kristallogr. 118, 257 (1963).Google Scholar
16. Ito, S., Banno, S., Kawano, T., Suzuki, K., Mat. Res. Bull. 16, 313 (1981).Google Scholar
17. Wendschuh-Josties, M., O'Neill, H.St.C., Bente, K., Brey, G., Neues Jahrbuch f. Mineralogie 6, 273 (1950).Google Scholar
18. Deiseroth, H.J., Müller-Buschbaum, H.K., J. Inorg. Nucl. Chem 35, 3177 (1973).Google Scholar
19. Wang, Q.S., Holzwarth, N.A.W., Phys. Rev. B 41, 3211 (1990).Google Scholar
20. Pandey, R., Jaffe, J.E., Kunz, A.B., Phys. Rev. B 43, 9228 (1991).Google Scholar
21. Springborg, M., Taurian, O.E., J. Phys. C 19, 6347 (1986).Google Scholar
22. Brinckmann, W.F., Rice, T.M., Bill, B., Phys. Rev. 8, 1570 (1973).Google Scholar