Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:34:36.572Z Has data issue: false hasContentIssue false

Electronic Structure of Titanium Oxide Crystal Surface with Lithium Atom on the Surface

Published online by Cambridge University Press:  21 March 2011

M. Oshikiri
Affiliation:
Physical Properties Division, National Research Institute for Metals 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
F. Aryasetiawan
Affiliation:
Theory Research Group, Joint Research Center for Atom Technology–Angstrom Technology Partnership 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
M. Boerol
Affiliation:
Theory Research Group, Joint Research Center for Atom Technology–Angstrom Technology Partnership 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
Get access

Abstract

The electronic structure of the bulk TiO2 in the rutile structure, geometric and electronic structure of two dimensional titanium oxide and lithium titanium oxide layers have been investigated. Not only density functional approach within the local density approximation (LDA) but also GW approach has been tried and the LDA electronic band structures have been compared with the quasiparticle energy structures. The unit cells which include a few atomic layers and open space of more than several angstroms have been used as geometric model of the surface. The surface geometric relaxation has been investigated by the Car-Parrrinello quantum molecular dynamics method based on the plane wave basis with pseudo potential within Becke-Lee-Yang-Parr (BLYP) generalized gradient approximation (GGA) and the quasiparticle energy structure has been obtained by the GW method based on the linearized muffin tin orbital (LMTO) basis with the atomic sphere approximation (ASA). Good applicability of this hybridized first principles approach has been confirmed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fujishima, A. and Honda, K., Nature 238, 37 (1972).Google Scholar
2. Ebina, T., Iwasaki, T., Onodera, Y., Hayashi, H., Nagase, T., Chatterjee, A. and Chiba, K., J. Power Sources 81–82, 393 (1999); F. García-Alvarado, M. E. Arroyo y de Dompablo, E. Morán, M. T. Gutiérrez, A.Kuhn and A. Várez, J. Power Sources 81-82, 85 (1999).Google Scholar
3. Campá, J. A., Vélez, M., Cascales, C., Puebla, E. Gutiérrez, Monge, M. A., Rasines, I. and Ruíz-Valero, C., J. Crystal Growth 142, 87 (1994).Google Scholar
4. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985); CPMD code by J. Hutter. et al., Max-Planck-Institut für Festkörperforschung and IBM Zurich Research Laboratory, 1995-1999Google Scholar
5. Becke, A. D.: Phys. Rev. A 38, 3098 (1988)Google Scholar
6. Lee, C., Yang, W. and Parr, R. G.: Phys. Rev. B 37, 785 (1988)Google Scholar
7. Hohenberg, P. and Kohn, W.: Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham: Phys. Rev. 140, A1133 (1965).Google Scholar
8. Hedin, L. and Lundqvist, S.: Solid State Physics 23, 1 (1969).Google Scholar
9. Hybertsen, M. S. and Louie, S. G.: Phys. Rev. B 34, 5390 (1986).Google Scholar
10. Aryasetiawan, F.: Phys. Rev. B 46, 13051 (1992).Google Scholar
11. Perdew, J. P. and Zunger, A.: Phys. Rev. B 23, 5048 (1981).Google Scholar
12. Oshikiri, M. and Aryasetiawan, F.: Phys. Rev. B 60, 10754 (1999); M. Oshikiri and F. Aryasetiawan: J. Phys. Soc. Jpn. 69, 2113 (2000);Google Scholar
13. Aryasetiawan, F. and Gunnarsson, O.: Rep. Prog. Phys. 61, 271 (1998).Google Scholar
14. Blanchin, M. G., Vicario, E. and Ploc, R. A., J. Appl. Crystallogr. 10, 228 (1977).Google Scholar
15. Andersen, O. K.: Phys. Rev. B 12, 3060 (1975); O. K.Andersen and O. Jepsen: Phys. Rev. Lett. 53, 2571 (1984).Google Scholar
16. Godby, R. W., Schlüter, M. and Sham, L. J.: Phys. Rev. B 37, 10159 (1988).Google Scholar
17. Massidda, S., Resta, R., Posternak, M. and Baldereschi, A.: Phys. Rev. B 52, R16977 (1995).Google Scholar
18. Hardman, P. J., Raikar, G. N., Muryn, C. A., Laan, G. van der, Wincott, P. L. and Thornton, G., Phys. Rev. B 49, 7170 (1994).Google Scholar