Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T17:38:18.655Z Has data issue: false hasContentIssue false

Electronic Structure of the Layered Ferroelectric Perovskite SrBi2Ta2O9

Published online by Cambridge University Press:  10 February 2011

J Robertson
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UK
C W Chen
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UK
W L Warren
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1349, USA
Get access

Abstract

The band structure of the Bi layered perovskite SrBi2Ta2O9 (SBT) has been calculated by the tight binding method. We find both the valence and conduction band edges to consist of states primarily derived from the Bi-O layer rather than the perovskite Sr-Ta-O blocks. The valence band maximum arises from 0 p and some Bi s states, while the conduction band minimum consists of Bi p states, with a band gap of 5.1 eV. It is argued that the Bi-O layers largely control the electronic response of SBT while the ferroelectric response originates from the perovskite Sr-Ta-O block. Bi and Ta centered traps are calculated to be shallow, which may account in part for the excellent fatigue properties of SBT.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J F, Araujo, C A Paz de, Science 246 1400 (1989)Google Scholar
2. Evans, J T, Womack, R, IEEE J Solid State Circuits 23 1171 (1988)Google Scholar
3. Al-Shareef, H N, Kingon, A I, Chen, X, Bellur, K, Auciello, O, J Mat Res 9 2968 (1994)Google Scholar
4. Yoo, I K, Desu, S B, Xing, J, Mat Res Soc Symp Proc 310 165 (1993)Google Scholar
5. Warren, W L, Dimos, D, Tuttle, B A, Nasby, R, Pike, G E, App Phys Let 65 1018 (1994)Google Scholar
6. Dimos, D, Warren, W L, Sinclair, M B, Tuttle, B A, Schwartz, R W, J App Phys 76 4305 (1994)Google Scholar
7. Larsen, P K, Dormans, GJM, Taylor, D J, VanVeldhoven, P J, J App Phys 76 2405 (1994)Google Scholar
8. Mihara, T, Yoshimori, H, Watanabe, H, Araujo, C A Paz de, Jpn J App Phys 34 5233 (1995)Google Scholar
9. Duicker, H M, Beale, P D, Scott, JF, Araujo, C A Paz de, Jpn J App Phys 34 5233 (1995)Google Scholar
10. Mihara, T, Watnabe, H, Araujo, C A Paz de, Jpn J Appl Phys 33 5281 (1994)Google Scholar
11. Bernstein, S D, Wong, T Y, Kisler, Y, Tustison, R W, J Mater Res 8 12 (1992)Google Scholar
12. Nakamura, T, Nakao, Y, Kamisawa, A, Takasu, H, Appl Phys Lett 65 1522 (1994)Google Scholar
13. Cheung, J T, Morgan, P E D, Neurgaonkar, R, Proc 4th Symp Integrated Ferroelectrics, Ed R, Pandholzer, Monterey, CA, March (1992) p 158 Google Scholar
14. Ramesh, R, Gilchrist, H, Sands, T, Keramidas, V, Fork, DK, App Phys Let 62 3592 (1993)Google Scholar
15. Araujo, C A Paz de, Cuchiaro, J D, McMillan, L D, Scott, J F, Nature 374 627 (1995)Google Scholar
16. Watanabe, H, Mihara, T, Yoshimori, H, deAraujo, C A Paz, Jpn J App Phys 34 5240 (1995)Google Scholar
17. Dat, R, Lee, J K, Auciello, O, Klingon, A I, Appl Phys Lett 67 572 (1995)Google Scholar
18. Li, T, Zhu, Y, Desu, S B, Peng, C H, Nagata, M, Appl Phys Lett 68 616 (1995)Google Scholar
19. Smolenskii, G A, Agronovskaya, A I, Sov Phys Solid State 1 400 (1959)Google Scholar
20. Jaffe, B, Cook, W R, Jaffe, H, ‘Piezoelectric Ceramics’ (Academic Press, London, 1971)Google Scholar
21. Withers, R L, Thompson, J G, Rae, A D, J Solid State Chem 94 404 (1991)Google Scholar
22. Rae, A D, Thompson, J G, Withers, R L, Acta Cryst B 48 418 (1992)Google Scholar
23. Robertson, J, Warren, W L, Tuttle, B A, Dimos, D, Smyth, D M, Appl Phys Lett 63 1519 (1993)Google Scholar
24. Robertson, J, Warren, W L, Dimos, D, Tuttle, B A, Pike, G E, Payne, D A, Phys Rev B 53 (Feb 1, 1996)Google Scholar
25. Mattheiss, L F, Phys Rev B 6 4718 (1972)Google Scholar
26. Harrison, W A, ‘Electronic Structure’ (Freeman, San Francisco, 1980)Google Scholar
27. Robertson, J, Phil Mag B 43 497 (1981)Google Scholar
28. Mattheiss, L F, Hamann, D R, Phys Rev B 26 2686 (1982)Google Scholar
29. King-Smith, R. D., Vanderbilt, D., Phys Rev B 9 5828 (1994)Google Scholar
30. Hybertsen, M S, Mattheiss, L F, Phys Rev Lett 60 1661 (1988)Google Scholar
31. Desu, S B, private communicationGoogle Scholar
32. Hjalmarson, H J, Vogl, P, Wolford, D J, Dow, J D, Phys Rev Lett 44 810 (1980)Google Scholar
33. Al-Shareef, H N, Dimos, D, Boyle, T J, Waren, W L, Tuttle, B A, App Phys Let 68 690 (1996)Google Scholar
34. Dimos, D, Al-Shareef, H N, Warren, W L, Tuttle, B A, J Appl Phys, submittedGoogle Scholar
35. Warren, W L, Dimos, D, Appl Phys Lett 64 866 (1994)Google Scholar
36. Warren, W L, Dimos, D, Tuttle, B A, Appl Phys Lett 67 1426 (1995)Google Scholar