Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:30:32.973Z Has data issue: false hasContentIssue false

Electronic Structure of Layered and Linear Chain Materials by Scanning Probe Microscopy

Published online by Cambridge University Press:  21 February 2011

R.V. Coleman
Affiliation:
University of Virginia, Charlottesville, VA 22901
Z. Dai
Affiliation:
University of Virginia, Charlottesville, VA 22901
Y. Gong
Affiliation:
University of Virginia, Charlottesville, VA 22901
C.G. Slough
Affiliation:
University of Virginia, Charlottesville, VA 22901
Q. Xue
Affiliation:
University of Virginia, Charlottesville, VA 22901
Get access

Abstract

Transition metal impurities such as Fe, Ni, and Co can be intercalated into the van der Waals gap of layer structure dichalcogenides and these modify the charge-density wave (CDW) structure and CDW energy gaps. Ordered superlattices associated with antiferromagnetic phases can be detected by both scanning tunneling microscopy (STM) and atomic force microscopy (AFM). STM spectroscopy indicates the formation of a mixed spin-density-wave (SDW) and CDW (SDWCDW) in the doped materials. The quasi-one dimensional trichalcogenide NbSe3 exhibits two CDW transitions and the presence of dilute transition metal impurities produces ordered superlattices due to long range screening of the impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Coleman, R.V., Everson, M.P., Lu, Hao-An, and Johnson, A., Phys. Rev. B 41, 460 (1990).Google Scholar
[2] Coleman, R.V., Giambattista, B., Hansma, P.K., Johnson, A., McNairy, W.W., and Slough, C.G., Adv. Phys. 37, 559 (1988).Google Scholar
[3] Whitney, D.A., Fleming, R.M., and Coleman, R.V., Phys. Rev. B15, 3405 (1977).Google Scholar
[4] Hillenius, S.J., Coleman, R.V., Domb, E.R., and Sellmyer, D.J., Phys. Rev. B 19, 4711 (1979).Google Scholar
[5] Dai, Z., Xue, Q., Gong, Y., Slough, C.G., and Coleman, R.V., Phys. Rev. B 48, 14543 (1993).Google Scholar
[6] Hillenius, S.J. and Coleman, R.V., Phys. Rev. B 20, 4569 (1979).Google Scholar
[7] Gong, Y., Xue, Q., Dai, Z., Slough, C.G., Coleman, R.V., and Falicov, L.M., Phys. Rev. Lett. 71, 3303 (1993).Google Scholar
[8] Zhenxi Dai, Slough, C.G., and Coleman, R.V., Phys. Rev. B 45, 9469 (1992).Google Scholar
[9] Xue, Q., Gong, Y., Slough, C.G., and Coleman, R.V. (unpublished).Google Scholar
[10] Slough, C. G., Dai, Z., Gong, Y., Xue, Q., Drake, D.L., and Coleman, R.V. (unpublished).Google Scholar
[11] Denley, D. and Falicov, L.M., Phys. Rev. B 17, 1289 (1978).CrossRefGoogle Scholar
[12] Overhauser, A.W., Phys. Rev. B 29, 7023 (1984).Google Scholar
[13] Antoniou, P.D., Phys. Rev. B 20, 231 (1979).CrossRefGoogle Scholar