Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T02:33:24.332Z Has data issue: false hasContentIssue false

Electronic Structure of La(Fe0.88Si0.12)13

Published online by Cambridge University Press:  01 February 2011

Nozomu Kamakura
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Tetsuo Okane
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Yukiharu Takeda
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Shin-ichi Fujimori
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Yuji Saitoh
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Hiroshi Yamagami
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Atsushi Fujimori
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Hyogo, Japan
Asaya Fujita
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Graduate School of Engineering, Sendai, Japan
Shun Fujieda
Affiliation:
[email protected], Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
Kazuaki Fukamichi
Affiliation:
[email protected], Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
Get access

Abstract

La(Fe0.88Si0.12)13 shows peculiar magnetic properties such as the first order paramagnetic-ferromagnetic transition and magnetic-field induced metamagnetic transition accompanied by the lattice expansion. The practical application using the magnetic transition temperature controlled by hydrogen absorption is expected in this compound. Here, the electronic structure of La(Fe0.88Si0.12)13 has been investigated by photoemission spectroscopy using synchrotron soft x-rays. The Fe 3s core-level photoemission spectra below and above the Curie temperature TC exhibit a satellite structure at ~ 4.3 eV higher binding energy than the main peak, which is attributed to the exchange splitting due to the local moment of Fe. The exchange splitting of the Fe 3s photoemission spectrum with the asymmetric line shape shows that the magnetization of La(Fe0.88Si0.12)13 is derived by the exchange split Fe 3d bands like the itinerant ferromagnetism in Fe metal, while the magnetic transition of La(Fe0.88Si0.12)13 is the first order. The valence band photoemission spectrum shows temperature dependence across the TC. The temperature dependence of the photoemission spectra is discussed based on the difference between the electronic structure in the ferromagnetic phase and that in the paramagnetic phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fujita, A. Akamatsu, Y. and Fukamichi, K. J. Appl. Phys. 85, 4756 (1999).Google Scholar
2 Fujita, A. Fujieda, S. Fukamichi, K. Mitamura, H. and Goto, T. Phys. Rev. B 65, 014410 (2001).Google Scholar
3 Fujita, A. Fukamichi, K. Wang, J.-T. and Kawazoe, Y. Phys. Rev. B 68, 104431 (2003).Google Scholar
4 Fujieda, S. Fujita, A. Fukamichi, K. Yamaguchi, Y. and Ohoyama, K. J. Phys. Soc. Jpn. 77, 074722 (2008).Google Scholar
5 Liu, X. B. Altounian, Z. and Ryan, D. H. J. Phys.: Condens. Matter 15, 7385 (2003).Google Scholar
6 Hamdeh, H. H. Al-Ghanem, H., Hikal, W. M. Taher, S. M. Ho, J. C. Anh, D. T. K. Thuy, N. P. Duc, N. H. and Thang, P. D. J. Magn. Magn. Mater. 269, 404 (2004).Google Scholar
7 Fujieda, S. Fujita, A. Fukamichi, K. Yamazaki, Y. and Iijima, Y. Appl. Phys. Lett. 79, 653 (2001).Google Scholar
8 Fujita, A. Fujieda, S. Hasegawa, Y. and Fukamichi, K. Phys. Rev. B 67, 104416 (2003).Google Scholar
9 Lyubina, J. Nenkov, K. Schultz, L. and Gutfleisch, O. Phys. Rev. Lett. 101, 177203 (2008).Google Scholar
10 Kisker, E. Schröder, K., Campagna, M. and Gudat, W. Phys. Rev. Lett. 52, 2285 (1984).Google Scholar
11 Aebi, P. Kreutz, T. J. Osterwalder, J. Fasel, R. Schwaller, P. and Schlapbach, L. Phys. Rev. Lett. 76, 1150 (1996).Google Scholar
12 Greber, T. Kreutz, T. J. and Osterwalder, J. Phys. Rev. Lett. 79, 4465 (1997).Google Scholar
13 Kreutz, T. J. Greber, T. Aebi, P. and Osterwalder, J. Phys. Rev. B 58, 1300 (1998).Google Scholar
14 Campen, D. G. Van and Klebanoff, L. E. Phys. Rev. B 49, 2040 (1994).Google Scholar
15 Bondino, F. Magnano, E. Malvestuto, M. Parmigiani, F. McGuire, M. A. Sefat, A. S. Sales, B. C., Jin, R. Mandrus, D. Plummer, E. W. Singh, D. J. and Mannella, N. Phys. Rev. Lett. 101, 267001 (2008).Google Scholar
16 Acker, J. F. van, Stadnik, Z. M. Fuggle, J. C. Hoekstra, H. J. W. M. Buschow, K. H. J. and Stroink, G., Phys. Rev. B 37, 6827 (1988).Google Scholar
17 Vleck, J. H. Van. Phys. Rev. 45, 405 (1934).Google Scholar
18 Egert, B. and Panzner, G. Phys. Rev. B 29, 2091 (1984).Google Scholar
19 Sirotti, F. Santis, M. D. and Rossi, G. Phys. Rev. B 48, 8299 (1993).Google Scholar
20 Doniach, S. and Ŝunjiæ, M. J. Phys. C 3, 285 (1970).Google Scholar
21 Cui, Y. T. Kimura, A. Miyamoto, K. Taniguchi, M. Xie, T. Qiao, S. Shimada, K. Namatame, H. Ikenaga, E. Kobayashi, K. Lin, H. Kaprzyk, S. Bansil, A. Nashima, O. and Kanomata, T. Phys. Rev. B 78, 205113 (2008).Google Scholar