Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T09:21:32.199Z Has data issue: false hasContentIssue false

Electronic Structure, Localization and 5f Occupancy in Pu Materials

Published online by Cambridge University Press:  13 June 2012

Scott Richmond
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

The electronic structure of delta plutonium (δ-Pu) and plutonium compounds is investigated using photoelectron spectroscopy (PES). Results for δ-Pu show a small component of the valence electronic structure which might reasonably be associated with a 5f6 configuration. PES results for PuTe are used as an indication for the 5f6 configuration due to the presence of atomic multiplet structure. Temperature dependent PES data on δ-Pu indicate a narrow peak centered 20 meV below the Fermi energy and 100 meV wide. The first PES data for PuCoIn5 indicate a 5f electronic structure more localized than the 5fs in the closely related PuCoGa5. There is support from the PES data for a description of Pu materials with an electronic configuration of 5f5 with some admixture of 5f6 as well as a localized/delocalized 5f5 description.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shim, J.H., et al. ., Nature 446, 513 (2007).Google Scholar
2. Tobin, J.G., et al. ., Phys. Rev. B 72, 085109 (2005).Google Scholar
3. Havela, L., et al. ., Phys. Rev. B 65, 235118 (2002).Google Scholar
4. Shick, A., et al. ., EPL 77, 17003 (2007).Google Scholar
5. Arko, A.J., et al. ., Phys. Rev. B 62, 1773 (2000).Google Scholar
6. Shorikov, A.O., et al. ., Phys. Rev. B 72, 24485 (2005).Google Scholar
7. Marianetti, C.A., et al. ., Phys. Rev. Lett. 101, 56403 (2008).Google Scholar
8. Gouder, T. et al. ., Phys. Rev. Lett. 84, 3378 (2000).Google Scholar
9. Oppeneer, P.M., et al. ., Phys. Rev. B 61, 12825 (2000).Google Scholar
10. Suzuki, M.-T., et al. ., Phys. Rev. B 80, 161103(R) (2009).Google Scholar
11. Shick, A., et al. ., J. Nuc. Mat. 385, 21 (2009).Google Scholar
12. Yee, Chuck-Hou, et al. ., Phys. Rev. B 81, 35105 (2010).Google Scholar
13. Durakiewicz, T., et al. ., Phys. Rev. B 70, 205103 (2004).Google Scholar
14. Gerken, F., et al. ., J. Phys. F: Met. Phys. 13, 1571 (1983).Google Scholar
15. Sarrao, J.L., et al. ., Nature 420, 297 (2002).Google Scholar
16. Bauer, E.D., et al. ., J. Phys. Con. Mat. 24, 052206 (2012).Google Scholar
17. Butterfield, M.T., et al. ., Surface Science 571, 7482 (2004).Google Scholar
18. Joyce, J.J., et al. ., Phys. Rev. Lett. 91, 176401 (2003).Google Scholar
19. Wills, J.M., et al. ., J. Elect. Spectr. and Related Phenom. 135, 163 (2004).Google Scholar
20. Prodan, I.D., et al. ., Phys. Rev. B 76, 33101 (2007).Google Scholar
21. Joyce, J.J., et al. ., Phys. Rev. B 54, 17515 (1996).Google Scholar
22. Joyce, J. J., et al. ., J. Electron. Spectros. & Rel. Phenom. 49, 31 (1989).Google Scholar
23. Joyce, J. J., et al. ., Surf. and Interface Analysis 26, 121 (1998).Google Scholar
24. The role of peak height vs integrated spectral intensity can be misleading as demonstrated in reference [21] where the peak height for Yb metal decreased by 20% between 25 and 250 K due to phonon broadening of the lineshape while the integrated spectral weight remained constant.Google Scholar
25. Zhu, J.X., et al. ., Phys. Rev. B, 76, 245118 (2007).Google Scholar