Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T13:55:28.751Z Has data issue: false hasContentIssue false

Electronic Structure Investigation of MAX-Phases by Soft X-ray Emission Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Martin Magnuson*
Affiliation:
[email protected], Uppsala University, Department of Physics, P. O. Box 530, Uppsala, S-75121, Sweden, +46-18-471-3524
Get access

Abstract

The electronic structure of nanolaminate Ti2AlC and Ti2AlN thin films, so-called MAX-phases, were investigated by soft X-ray emission spectroscopy. These nanolaminated carbide and nitride compounds represent a class of layered materials with a combination of properties from both metals and ceramics. The bulk-sensitive soft X-ray emission technique is particularly useful for detecting detailed electronic structure information about internal monolayers and interfaces. The Ti-Al bonding is manifested by a pronounced peak in the Ti L-emission of Ti2AlC and Ti2AlN that is not present in the binary TiC system. The spectral shape of Al L-emission in the MAX-phase is strongly modified in comparison to metallic Al. By replacing or partly exchanging C with N, a change of the electron population can be achieved causing a change of covalent bonding between the laminated layers, which enables control of the material properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barsoum, M. W.; Prog. Solid State Chem. 28, 201 (2000).Google Scholar
2. Magnuson, M., Palmquist, J.-P., Mattesini, M., Li, S., Ahuja, R., Eriksson, O., Emmerlich, J., Wilhelmsson, O., Eklund, P., Högberg, H., Hultman, L., Jansson, U.; Phys. Rev. B 72, 245101 (2005).Google Scholar
3. Magnuson, M., Mattesini, M., Wilhelmsson, O., Emmerlich, J., Palmquist, J.-P., Li, S., Ahuja, R., Hultman, L., Eriksson, O. and Jansson, U., Phys. Rev. B. 74 205102 (2006)Google Scholar
4. Magnuson, M., Wilhelmsson, O., Palmquist, J.-P., Jansson, U., Mattesini, M., Li, S., Ahuja, R. and Eriksson, O., Phys. Rev. B. 74 195108 (2006).Google Scholar
5. Medvedeva, N. I., Novikov, D. L., Ivanovsky, A. L., Kuznetsov, M. V. and Freemena, A. J.; Phys. Rev. B 58, 16042 (1998).Google Scholar
6. Stoltz, S. E., Starnberg, H. I. and Barsoum, M. W.; J. Phys. and Chem. Of Solids; 64, 2321 (2003).Google Scholar
7. Myhra, S., Crossley, J. A. A. and Barsoum, M. W.; J. Phys. Chem. Solids; 62, 811 (2001).Google Scholar
8. Denecke, R., Vaterlein, P., Bassler, M., Wassdahl, N., Butorin, S., Nilsson, A., Rubensson, J.-E., Nordgren, J., Mårtensson, N. and Nyholm, R.; J. Electron Spectrosc. Relat. Phenom. 101–103, 971, (1999).Google Scholar
9. Nordgren, J. and Nyholm, R.; Nucl. Instr. Methods A246, 242 (1986); J. Nordgren, G. Bray, S. Cramm, R. Nyholm, J.-E. Rubensson and N. Wassdahl; Rev. Sci. Instrum. 60, 1690 (1989).Google Scholar
10. Magnuson, M., Mattesini, M., Li, S., Hoglund, C., Beckers, M., Hultman, L. and Eriksson, O.; Phys. Rev. B, in press (2007).Google Scholar
11. Magnuson, M., Wassdahl, N. and Nordgren, J.; Phys. Rev. B 56, 12238 (1997).Google Scholar
12. Ederer, D. L., Schaefer, R., Tsang, K.-L., Zhang, C. H., Callcott, T. A. and Arakawa, E. T.; Phys. Rev. B 37, 8594 (1988).Google Scholar
13. Ichikawa, K.; J. Phys. Soc. Jpn. 37, 377 (1994).Google Scholar
14. Zhou, Y., Sun, Z., Wang, X. and Chen, S.; J. Phys. Condens. Matter 13, 10001 (2001).Google Scholar
15. Kurmaev, E. Z., Ankudinov, A. L., Rehr, J. J., Finkelstein, L. D., Karimov, P. F. and Moewes, A.; J. Elec. Spec. 148, 1 (2005).Google Scholar