Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:06:40.145Z Has data issue: false hasContentIssue false

Electronic Structure and Properties of Oxide Surfaces and Interfaces

Published online by Cambridge University Press:  22 February 2011

A. M. Stoneham
Affiliation:
Theoretical Physics Division, Building 424.4, AERE, Harwell, Didcot, Oxon OXII ORA, UK.
P. W. Tasker
Affiliation:
Theoretical Physics Division, Building 424.4, AERE, Harwell, Didcot, Oxon OXII ORA, UK.
Get access

Abstract

Many technologically-important areas rely on properties of ceramic surfaces or interfaces. Some of these properties are simply stability, e.g. resistance to dimension change, to grain-size change, or to change in coverage by a metal layer. Other properties rely on well-defined electronic features, e.g. a suitable density of surface states, of surface defects, or of response to adsorbed species. Still further surface characteristics - the precise geometric structures, the near-surface electric fields, and especially impurity segregation - can strongly influence observed behaviour.

This survey emphasises the insights gained from atomistic modelling of ceramic surfaces and interfaces. The theoretical methods allow one to identify the features determining surface geometry, the degree of surface segregation by impurities, the role of the image charge and the influence of space-charge layers on intrinsic defect levels. The surface distortion affects defects like the surface Fs+ centre (electron trapped at an oxygen vacancy on an oxide) and similar colour centres. Whilst most of the results will be for oxides, parallels with semiconductor systems and the special features of metal-oxide interfaces are mentioned.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tasker, P.W. and Stoneham, A.M., 1984, Proc. Brit. Ceram. Soc. 34 1.Google Scholar
[2] Tasker, P.W., in “Computer Simulation on Physical Metallurgy ” (ed. Jacucci, G.) Reidel, Dordrecht (to be published).Google Scholar
[3] Stoneham, A.M., 1979, J. Amer. Ceram. Soc. 64 54.Google Scholar
[4] Moodie, A.F., Warble, C.E., 1971, J. Cryst. Growth 10 26.CrossRefGoogle Scholar
[5] Kingery, W.D., 1983, page 3 of “Ceramic Powders” (edited Vincenzini, P., Elsevier, Amsterdam), especially pages 13, 14.Google Scholar
[6] McLean, S.G. and Duley, W.W., 1984, J. Phys. Chem. Sol. 45 223.CrossRefGoogle Scholar
[7] Fievet, F., Fievet-Vincent, F. and Figlarz, M. 1983, page 651 of “Ceramic Powders”, edited Vincenzini, P., Elsevier, Amsterdam).Google Scholar
[8] Avnir, D., Farin, D. and Pfeifer, P., 1984, Nature 308, 261.Google Scholar
[9] Nelson, R.L., Hale, J.W., Disc. Farad. Soc. 52, 77 (1971).Google Scholar
[10] Cox, P.A., 1984, private communication.Google Scholar
[11] Henrich, V.E., Dresselhaus, G. and Zeiger, H.J., 1980, Phys. Rev. B22, 4764.Google Scholar
[12] Henrich, V.E. and Kurtz, R.L., 1981, J. Vac. Sci. Tech. 18, 416.Google Scholar
[13] Knotek, M.L., 1984, Physics Today (September issue) page 24 and references therein.Google Scholar
[14] Yu, M.L., 1981, Phys. Rev. B24, 1147, 5625; 1982 Phys. Rev. Lett. 48 427.Google Scholar
[15] Nakaijama, T., 1983, Surf. Sci. 133.Google Scholar
[16] Tasker, P.W., 1984, Surface Science, 137, 91.Google Scholar
[17] Tait, R.H. and Kasowski, R.V. 1979, Phys. Rev. B20, 5178.Google Scholar
[18] Tasker, P.W., 1979, J. Phys. C: Solid St. Phys. 12, 4977.Google Scholar
[19] Tasker, P.W. and Duffy, D.M., 1983, Philos. Mag. A47, L45.Google Scholar
[20] Duffy, D.M. and Tasker, P.W., 1983, Philos. Mag. A47, 817.Google Scholar
[21] Duffy, D.M. and Tasker, P.W., 1984, Philos. Mag. A50, 155.Google Scholar
[22] Duffy, D.M. and Stoneham, A.M., 1983, J. Phys. C16, 4087.Google Scholar
[23] Petot-Ervas, G., 1984, page 131 of “Basic Properties of Binary Oxides” (edited Dominguez-Rodriguez, A., Castaing, J. and Marquez, R., Seville University Press).Google Scholar
[24] Stoneham, A.M., 1975, “Theory of Defects in Solids”, Oxford University Press, Oxford.Google Scholar
[25] Hayes, W. and Stoneham, A.M., 1985, “Defects and Defect Processes in Non metallic Solids” (John Wiley, NY).Google Scholar
[26] (a) Nelson, R.L. and Tench, A.J., 1964, J. Chem. Phys. 40, 2736.Google Scholar
(b) Tench, A.J. and Nelson, R.L., 1966, J. Chem. Phys. 44, 1714.CrossRefGoogle Scholar
(c) Nelson, R.L., Disc. Farad. Soc. 1966, 41, 322.Google Scholar
(d) Nelson, R.L., Tench, A.J. and Harmsworth, B.J., 1967, Trans. Farad. Soc. 63, 1427 CrossRefGoogle Scholar
(e) Nelson, R.L. and Tench, A.J., 1967, Trans. Farad. Soc. 63, 3039.CrossRefGoogle Scholar
(f) Tench, A.J., 1971, Surf. Sci. 25, 625.Google Scholar
[27] Sharma, R.R. and Stoneham, A.M., 1976, J. Chem. Soc. Farad. II 72, 913. See also H.A. Kassim, J.A.D. Matthew and B. Green 1978, Surf. Sci. 74 109.Google Scholar
[28] Underhill, P. and Gallon, T.E., 1982, Sol. St. Comm. 43, 9.Google Scholar
[29] e.g. ref. 22(d).Google Scholar
[30] Henrich, V.E., 1983, Prog. Surf. Sci. 14, 175.Google Scholar
[31] Henrich, V.E. and Kurtz, R.L., 1981, Phys. Rev. B23, 6280.Google Scholar
[32] Henrich, V.E., Dresselhaus, G. and Zeiger, H.J., 1976, Phys. Rev. Lett. 36, 1335.Google Scholar
[33] Henrich, V.E., Dresselhaus, G. and Zeiger, H.J., 1978, Phys. Rev. B17, 4908.Google Scholar
[34] Courths, R., 1980, phys. stat. sol (b) 100, 135.Google Scholar
[35] Kurtz, R.L. and Henrich, V., 1982, Phys. Rev. B25, 3563.Google Scholar
[36] Kurtz, R.L. and Henrich, V., 1983, Phys. Rev. B28, 6699.Google Scholar
[37] Chung, Y.W., Lo, W.J. and Somojai, G.A., 1977, Surf. Sci. 64, 588.Google Scholar
[38] Lo, W.J. and Somorjai, G.A., 1979, Phys. Rev. B17, 4942.Google Scholar
[39] Tench, A.J. and Nelson, R.L., 1967, Trans. Farad.Soc. 63, 2254.Google Scholar
[40] Eley, D.D., Zammitt, M.A., 1971, J. Catal. 21, 377. A.J. Tench, 1972, J. Chem. Soc. Farad. 1 68, 1181. A.J. Tench and K.F.J. Kibblewhite, 1973, J. Chem. Soc. Comm. No. 1402, page 955.Google Scholar
[41] Coluccia, S.S., Deane, A.M. and Tench, A.J., 1978, J. Chem. Soc. Farad. I, 2913 A.J. Tench and G.T. Pott, 1974, Chem. Phys. Lett. 26, 590. S.S. Coluccia, A. Barton and A.J. Tench, 1981, J. Chem. Soc. Farad. I, 77, 2203.Google Scholar
[42] Duley, W.W., 1984, Phil. Mag. B49, 159. S.G. MacLean, W.W. Duley, 1984, J. Phys. Chem. Sol. 45, 223, 227. W.W. Duley, 1984, J. Chem. Soc. Farad. I, 80, 1173.Google Scholar
[43] Zecchina, A., Garrone, E. and Guglieminotti, E., 1983, Chem. Soc. Spec. Rep : Catalysis, 6, 101 et seq.Google Scholar
[44] Garrone, E., Zecchina, A., Stone, F.S., 1980, Phil. Mag. B42, 683. A. Zecchina, M.G. Lofthouse and F.S. Stone, 1975, J. Chem. Soc. Farad. I, 71, 1476.Google Scholar
[45] Che, M. and Tench, A.J., 1983, Adv. Catal. 32, 1.Google Scholar
[46] Clifford, P.K. and Tuma, D.T., 1982, Sensors and Actuators, 3, 238.Google Scholar
[47] Stoneham, A.M. and Sangster, M.J.L., 1980, Phil. Mag. B43, 609.Google Scholar
[48] Tasker, P.W., 1984, unpublished calculation.Google Scholar
[49] Maskell, K.A., Richens, M.J. and White, D., 1982, page 113 of “Hydrogen in Steel” (Institute of Metallurgists).Google Scholar
[50] Rochester, C.H., Scurrell, M.S., 1973, Chem. Soc. Spec. Rep : Surface and Defect Properties of Solids, 2, 114.Google Scholar
[51] Knotek, M.L., 1980, Surf. Sci. 91, L17.Google Scholar
[52] Smith, D.R. and Tench, A.J., Chem. Comm. 1968, page 1113. A.J. Tench and R.L. Nelson, 1968, J. Colloid Interfac. Sci. 26, 364. A.J. Tench and R.L. Nelson, 1968, Trans. Farad. Soc. 63, 2254. Y. Yanagisawa and R. Huzimura, 1984, J. Phys. Soc. Japan.Google Scholar
[53] Kunz, A.B., Guse, M.P., 1977, Chem. Phys. Lett. 45, 18.Google Scholar
[54] Jones, C.F., Segall, R.L., Smart, R. St. C., Turner, P.S., 1979, Phil. Mag. A39, 163, 1980, Phil. Mag. A42, 267, 1981, Proc. Roy. Soc. A374, 141, 1982, Rad. Eff. 60, 167.Google Scholar
[55] Beruto, D., Spinolo, G., Barco, L., Tamburini, U. Anselmi, Belleri, G., page 679 of “Ceramic Powders” (ed. Vincenzini, P., Elesevier, Amsterdam).Google Scholar
[56] Cox, P.A., Egdell, R.G., Harding, C., Patterson, W.R., Tavener, P.J., 1982, Surf. Sci. 123, 179.Google Scholar
[57] Tasker, P.W., Colbourn, E.A. and Mackrodt, W.C., 1984, J. Am. Ceram. Soc. in press.Google Scholar
[58] McCune, R.C. and Wynblatt, P., 1983, J. Am. Ceram. Soc. 66, 111.Google Scholar
[59] Masri, P. and Tasker, P.W., Surface Science in press.Google Scholar
[60] Duffy, D.M., Hoare, J.P. and Tasker, P.W., 1984, J. Phys. C17, L195.Google Scholar
[61] Kingery, W.D., 1981, Adv. in Ceramics 1, 1.Google Scholar
[62] Nowotny, e.g. J., 1978, J. de Chemie Physique, 75, 689.Google Scholar
[63] Nelson, R.L., Hale, J.W., Harmsworth, B.J. and Tench, A.J., 1968, Trans. Farad. Soc. 64, 2521.Google Scholar
[64] Dose, V., 1983, Prog. Surf. Sci. 13, 225.CrossRefGoogle Scholar
[65] Schumacher, E., Kappes, M., Marti, K., Radi, P., Scher, M., Schmidhalter, B., 1984, Berichte der Bunsenges 88, 220.Google Scholar
[66] Naidich, J.V., 1981, Prog. Surf. Membr. Sci. 14, 354.Google Scholar
[67] Stoneham, A.M., 19821983, Applic. of Surf. Sci. 14, 249.Google Scholar