Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:44:11.719Z Has data issue: false hasContentIssue false

Electronic Structure and Optical Absorption of Fluorographene

Published online by Cambridge University Press:  23 June 2011

Yufeng Liang
Affiliation:
Department of Physics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
Li Yang
Affiliation:
Department of Physics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
Get access

Abstract

A first-principles study on the quasiparticles energy and optical absorption spectrum of fluorographene is presented by employing the GW + Bethe-Salpeter Equation (BSE) method with many-electron effects included. The calculated band gap is increased from 3.0 eV to 7.3 eV by the GW approximation. Moreover, the optical absorption spectrum of fluorographene is dominated by enhanced excitonic effects. The prominent absorption peak is dictated by bright resonant excitons around 9.0 eV that exhibit a strong charge transfer character, shedding light on the exciton condensation and relevant optoelectronic applications. At the same time, the lowest-lying exciton at 3.8 eV with a binding energy of 3.5 eV is identified, which gives rise to explanation of the recent ultraviolet photoluminescence experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K.S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I. V. and Firsov, A.A., Science, 306, 666 (2004)Google Scholar
2. Novoselov, K.S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., and Firsov, A.A. Nature, 438, 197200 (438) Google Scholar
3. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H.L., Solid State Communications, 146, 351355(2008)Google Scholar
4. Wang, Xinran, Li, Xiaolin, Zhang, Li, Yoon, Youngki, Weber, Peter K., Wang, Hailiang, Guo, Jing, and Dai, Hongjie, Science, 324, 768 (2009)Google Scholar
5. Elias, D.C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S.V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., and Novoselov, K. S. Science 323, 610613 (2009)Google Scholar
6. Haberer, D., Vyalikh, D. V., Taiolis, S., Dora, B., Farjam, M., Fink, J., Marchenko, D., Pichler, T., Ziegler, K., Simonucci, S., Dresselhaus, M. S., Knupfer, M., Buchner, B., and Gruneis, A., Nano Letters 10, 33603366 (2010)Google Scholar
7. Robinson, J. T., Burgess, J. S., Junkermeier, C. E., Badescu, S. C., Reinecke, T. L., Perkins, F. K., Zalalutdniov, M. K., Baldwin, Jeffrey W., Culbertson, J. C., Sheehan, P. E., and Snow, E. S., Nano Letters 10, 30013005(2010)Google Scholar
8. Nair, Rahul R., Ren, Wencai, Jalil, Rashid, Riaz, Ibtsam, Kravets, Vasyl G., Britnell, Liam, Blake, Peter, Schedin, Fredrik, Mayorov, Alexander S., Yuan, Shengjun, Katsnelson, Mikhail I., Cheng, Hui-Ming, Strupinski, Wlodek, Bulusheva, Lyubov G., Okotrub, Alexander V., Grigorieva, Irina V., Grigorenko, Alexander N., Novoselov, Kstya S., and Geim, Andre K., Small 2010, 6, No.24, 2877-2884 Google Scholar
9. Jeon, Ki-Joon, Lee, Zonghoon, Pollak, Elad, Moreschini, Luca, Bostwick, Aaron, Park, Cheol-Min, Mendelsberg, Rueben, Radmilovic, Velimir, Kostecki, Robert, Richardson, Thomas J., and Rotenberg, Eli, ACS Nano vol. 5, no.2, 10421046 (2011)Google Scholar
10 Withers, F., Dubois, M, and Savchenko, A.K., Phys. Rev. B 82, 073403(2010)Google Scholar
11. Leenaerts, O., Peelaers, H., Hernández-Nieves, A. D., Partoens, B. and Peeters, F. M., Phys. Rev. B 82, 195436 (2010)Google Scholar
12. Cudazzo, Pierluigi, Attaccalite, Claudio, Tokatly, Ilya V., and Rubio, Angel, Phys. Rev. Lett. 104, 226804(2010)Google Scholar
13. Samarakoon, D. K., Chen, Zhifan, Nicolas, Chantel, and Wang, Xiao-Qian, Small 2011, 7, No.7, 965-969 Google Scholar
14. Şahinl, H., Topsakal, M., and Ciraci, S., Phys. Rev. B 83, 115432(2011)Google Scholar
15. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964)Google Scholar
16. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965)Google Scholar
17. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991)Google Scholar
18. Hybertsen, M. S. and Louie, S. G., Phys. Rev. B 34, 5390 (1986)Google Scholar
19. Rohlfing, M. and Louie, S. G., Phys. Rev. B 62, 4927(2000)Google Scholar
20. Onida, G., Reining, L., and Rubio, A., Rev. Mod. Phys. 74, 601(2002)Google Scholar
21. Hedin, L., Phys. Rev. 139, A796 (1965)Google Scholar
22. Yang, Li, Phys Rev. B 81, 155445(2010)Google Scholar