Published online by Cambridge University Press: 26 February 2011
The possible origin of the high degree of brittleness (i.e., low ductility) of the Ni-Al-based alloys in the B2 structures is investigated by means of all-electron self-consistent total energy LMTO calculations. Using a supercell approach, the energetics of the two simplest anti-phase boundaries (APB) for NiAl in the B2 structure - namely the ½<111> on {110} and ½<111> on {112} - are calculated for the first time assuming no relaxation at the interface. We find APB energies of order of 800 ergs/cm2 for both cases. Since the calculated APB energies are very high, <111> slip is hardly likely to occur - as suggested experimentally. By substituting Ni or Al with V, Cr or Mn at the APB interface plane, remarkably decreased APB energies are obtained. These first results on these simplified model systems may suggest a way to decrease the APB energy contribution to the ductility of NiAl-based alloys.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.