Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:04:16.768Z Has data issue: false hasContentIssue false

Electronic Properties of Hot-Wire Deposited Nanocrystalline Silicon

Published online by Cambridge University Press:  10 February 2011

R. Brüggemann
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
A. Hierzenberger
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
H.N. Wanka
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
M.B. Schubert
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

We compare the electronic properties of nanocrystalline silicon from hot-wire chemical vapor deposition in a high-vacuum and an ultra-high-vacuum deposition system, employing W and Ta as filament material. From the constant photocurrent method we identify a band gap around 1.15 eV while, in contrast, a Tauc plot from optical transmission data guides to a wide band gap above 1.9 eV. The sudden change-over from nanocrystalline to amorphous structure in a hydrogen dilution series is also find in the dark and photoconductivity measurements. The samples show a metastability effect in the dark conductivity upon annealing in vacuum with an increase in the dark conductivity, with the large dark conductivity decreasing slowly after the annealing cycle when the cryostat is flushed with air. We identify larger values for the mobility-lifetime products, which corresponds to the smaller defect density shoulder in constant photocur- rent spectra, for the ultra-high-vacuum deposited material compared to the high-vacuun counterpart.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wanka, H.N., Hierzenberger, A., and Schubert, M.B., Mat. Res. Soc. Symposium Proceedings No. 420, ed. Schiff, E. A. et al. (MRS, Pittsburgh, 1997), pp. 295300.Google Scholar
2 Briiggemann, R. et al. , J. Non-Cryst. Solids, in print, 1998.Google Scholar
3 Kanschat, P., Lips, K., Sieber, I., Fuhs, W., Hierzenberger, A., Briiggemann, R., these proceedings.Google Scholar
4 Vaneĉek, M. et al. , J. Non-Cryst. Solids, in print, 1998.Google Scholar
5 Iqbal, Z. and Vepfek, S., J. Phys. C: Solid State Phys. 16, 6241 (1983).Google Scholar
6 Hoheisel, M. and Beyer, W., Solid State Comm. 47, 573 (1983).Google Scholar
7 Koĉka, J., Nebel, C. E., and Abel, C.-D., Philos. Mag. B 63, 221 (1991).Google Scholar
8 Wanka, H., Brüggemann, R., Köhler, C., and Schubert, M.B., these proceedings.Google Scholar