Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T03:54:51.691Z Has data issue: false hasContentIssue false

Electronic Excitations in Initiation of Chemistry in Molecular Solids

Published online by Cambridge University Press:  21 March 2011

Maija M. Kuklja*
Affiliation:
Department of Electrical and Computer Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
Get access

Abstract

An ab initio study is performed for the initiation of chemistry in high explosive crystals from a solid-state physics viewpoint. Specifically, we are looking for the relationship between the defect-induced deformation of the electronic structure of solids, electronic excitations, and chemical reactions under shock conditions. Band structure calculations by means of the Hartree- Fock method with correlation corrections were done to model an effect of a strong compression induced by a shock/impact wave on the crystals with and without edge dislocations. Based on the results obtained, an excitonic mechanism of the earliest stages for initiation of high explosive solids is discussed with application to cyclotrimethylene trinitramine (also known as RDX) crystal. Experimental verification of the validity of the proposed model is reported for RDX and heavy metal azides. Thus, the key role of electronic excitations facilitated by edge dislocations in explosive solids is established and analyzed. Practical applications of the suggested mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Semenov, N. N., Chain Reactions, (in Russian) (Moskva, Nauka, 1986), 534.Google Scholar
2 Aduev, B. P., Aluker, E. D., Belokurov, G. M., Zakharov, Yu. A., Krechetov, A. G., JETP 89, 906 (1999).Google Scholar
3 Kuklja, M. M., Aduev, B. P., Aluker, E. D., Krasheninin, V. I., Krechetov, A. G., Mitrofanov, A. Yu., J. Appl. Phys., 89, 4156 (2001).Google Scholar
4 Kuklja, M. M. and Kunz, A. B., J. Phys. Chem. Solids 61, 35 (2000); J. Phys. Chem. B 103, 8427 (1999); J.Appl. Phys. 87, 2215 (2000); J.Appl. Phys. 86, 4428 (1999).Google Scholar
5 Kuklja, M.M., Kunz, A.B., in Multiscale Modelling of Materials, ed. by Bulatov, V.V., Rubia, T.D., Pjillips, R., Kaxiras, E., Ghoniem, N., (Mat. Res. Soc. Proc. 538, Pittsburgh, PA, 1999) 347352.Google Scholar
6 Dovesi, R., Saunders, V. R., Roetti, C., Causà, M., Harrison, N. M, Orlando, R., and Aprà, E., in CRYSTAL95 User's Manual (University of Torino, Torino, 1996).Google Scholar
7 Choi, C. S. and Prince, E., Acta Crystallogr. B, 28, 2857 (1972).Google Scholar
8 Marinkas, P. L., J. of Luminescence 15, 57 (1977).Google Scholar
9 Kuklja, M. M., Kunz, A. B., J. Appl. Phys., 89, N9, 2001.Google Scholar
10 Orloff, M. K., Mullen, P. A., and Rauch, F. C., J.Phys. Chem. 74, 2189 (1970).Google Scholar
11 Tarver, C. M., Fried, L. E., Ruggiero, A. J., Calef, D. F., in 10th International Detonation Symposium, Boston, MA, pp. 310 (1993).Google Scholar
12 Kunz, A. B., Kuklja, M. M., Botcher, T. R., Russell, T. P., Thermochim. Acta (submitted), 2000.Google Scholar
13 Botcher, T. R, Landouceur, H. D., and Russel, T. R., in Shock Compression of Condensed Matter -1997, APS Proceedings 429, ed. Schmidt, S.C., Dandekar, D.P., and Forbes, J.W., 989 (1998).Google Scholar
14 Coffey, C. S., in Structure and Properties of Energetic Materials, ed. by Liedenberg, D.H., Armstrong, R.W., Gilman, J.J., (Mat. Res. Soc. Proc. 296, Pittsburgh, Pennsylvania, 1993) 6373.Google Scholar
15 Dick, J. J., Appl. Phys. Lett. 44, 859 (1984).Google Scholar
16 Liddiard, T. P., Forbes, J. W., Price, D., in Proc. of the 9th Symposium on Detonation, 1989, 1235.Google Scholar