Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:42:29.623Z Has data issue: false hasContentIssue false

Electronic Doping in Epitaxial Pb(Zr0>52Ti0.48)03/SrRuO3 Heterostructures using a Ferroelectric Field Effect

Published online by Cambridge University Press:  15 February 2011

C. H. Ahn
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
T. Tybell
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
L. Antognazza
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
K. Char
Affiliation:
Conductus Inc., 969 W. Maude Ave., Sunnyvale, CA 94086, USA
M. R. Beasley
Affiliation:
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
O. Fischer
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
J.-M. Triscone
Affiliation:
DPMC University of Geneva, 24 Quai E.-Ansermet, 1211 Geneva 4 Switzerland
Get access

Abstract

We report on ferroelectric field effect experiments in ultrathin layers of the metallic perovskite SrRuC<3 using Pb(Zr0.52Ti0.48)O3/SrRuO3 epitaxial heterostructures. Switching the ferroelectric polarization of the Pb(Zr0.52Ti0.48)O3 layer induces a ∼ 10% change in the sheet resistance of the SrRuO3 layer that is nonvolatile and also reversible. Hall effect measurements that take into account the anomalous Hall effect reveal a carrier concentration of n ∼ 2 × 1022 electrons/cm3 and allow us to understand quantitatively the sign and magnitude of the observed resistance change. Of key importance for these experiments is the crystalline and surface quality of the SrRuO3 and Pb(Zr0.52Ti0.48)O3 layers. We also discuss how this general approach of nonvolatile doping using ferroelectrics opens new possibilities of directly creating small electronic structures without using traditional lithographic techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RFERENCES

1. Ahn, C.H., Triscone, J.-M., Archibald, N., Decroux, M., Hammond, R.H., Geballe, T.H., Fischer, O., and Beasley, M.R., Science 269, 373 (1995).Google Scholar
2. Ahn, C.H., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.-M., Decroux, M., Fischer, O., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).Google Scholar
3. Bergmann, G., Physics Today, 25 (August, 1979).Google Scholar
4. Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).Google Scholar
5. Jaffe, B., Cook, W.R. Jr, and Jaffe, H., “Piezoelectric Ceramics,” Academic Press, 1971.Google Scholar
6. Van Loan, P.R., Ceram. Bull. 51, 231 (1972);Google Scholar
Bouchard, R.J. and Gillson, J.L., Mater. Res. Bull. 7, 873 (1972).Google Scholar
7. Triscone, J.-M., Frauchiger, L., Decroux, M., Miéville, L., and Fischer, O., Beeli, C., and Stadelmann, P., Racine, G.-A., J. Appl. Phys. 79, 4298 (1996).Google Scholar
8. Ahn, C.H., Klein, L., Reiner, J.W., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.-M., Decroux, M., and Fischer, O., submitted for publication.Google Scholar
9. Allen, P.B., Berger, H., Chauvet, O., Forro, L., Jarlborg, T., Junod, A., Revaz, B., and Santi, G., Phys. Rev. B 53, 4393 (1996);Google Scholar
Gausepohl, S.C., Lee, Mark, Rao, R.A., and Eom, C.B., Phys. Rev. B 54, 8996 (1996).Google Scholar
10. Cho, J.H., Jia, Q.X., Wu, X.D., Foltyn, S.R., and Maley, M.P., Phys. Rev. B 54, 37 (1996).Google Scholar
11. Gulino, A., Egdell, R.G., Battle, P.D., and Kim, S.H., Phys. Rev. B 51, 6827 (1995).Google Scholar
12. Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, Ø., and Triscone, J.-M., submitted for publication.Google Scholar