Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T14:56:27.599Z Has data issue: false hasContentIssue false

Electronic and Atomic Structure of Ge2Sb2Te5 phase change memory material

Published online by Cambridge University Press:  01 February 2011

John Robertson
Affiliation:
[email protected], Cambridge University, Engineering, Trumpington St, Cambridge, N/A, CB2 1PZ, United Kingdom, 44 1223 748331, 44 1223 332662
Ka Xiong
Affiliation:
[email protected], Cambridge University, Engineering, Cambridge, N/A, CB2 1PZ, United Kingdom
Paul Peacock
Affiliation:
[email protected], Cambridge University, Engineering, Cambridge, N/A, CB2 1PZ, United Kingdom
Get access

Abstract

Electronic structure calculations are presented for various model structures of the crystalline and amorphous phases of Ge2Sb2Te5 (GST). The structures are all found to possess a band gap of order 0.5 eV, indicating closed shell behaviour. It is pointed out that structural vacancies in A7-like GST are not electronically active. In addition, A7-like structures do not support valence alternation pair (VAP) defects, which are one model of the conduction processes in the glassy phase in non-volatile memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolobov, A, et al, Jpn J App Phys 44, 3345 (2005).Google Scholar
2. Lai, S, Technical Digest IEDM (2003) p255 (IEEE)Google Scholar
3. Kalb, J, Spaepen, F, Wuttig, M, J App Phys 93, 2389 (2003).Google Scholar
4. Kalb, J, Spaepen, F, Pedersen, T P L, Wuttig, M, J App Phys 94, 4908 (2003).Google Scholar
5. Njoroge, W K, Woltens, H W, Wuttig, M, J Vac Sci Technol A 20, 230 (2002).Google Scholar
6. Yamada, N, Matsunaga, T, J App Phys 88, 7020 (2000).Google Scholar
7. Kolobov, A, Fons, P, Frenkel, A I, Ankudinov, A L, Tominaga, J, Uruga, T, Nature Mats 3, 703 (2004).Google Scholar
8. Baker, D A, Agarwal, S C, Lucovsky, G, Paesler, M A, Taylor, P C, preprintGoogle Scholar
9. Kastner, M, Adler, D, Fritzsche, H, Phys Rev Lett 37, 1504 (1976).Google Scholar
10. Milman, V, Winkler, B, White, J A, Pickard, C J, Payne, M C, Int J Quantum Chem 77, 895 (2000).Google Scholar
11. Vanderbilt, D, Phys Rev B 41, 7892 (1990).Google Scholar
12. Kato, T, Tanaka, K, Jpn J App Phys 44, 7340 (2005).Google Scholar
13. Welnic, M, Pamungkas, A, Detemple, R, Steimer, C, Blugel, S, Wuttig, M, Narure Mats 5, 56 (2006).Google Scholar
14. Raty, J Y, Godlevsky, V, Ghosez, P, Bichara, C, Gaspard, J P, Chelikowsky, J R, Phys Rev Lett 85, 1950 (2000).Google Scholar
15. Raty, J Y, Godlevsky, V V, Gaspard, J P, Cbichara, Bionducci, M, Bellisent, R, Ceolin, R, Chelikowsky, J R, Phys Rev B 65, 115205 (2002).Google Scholar
16. Bichara, C, Johnson, M, Raty, J V, Phys Rev Lett 95, 267801 (2005).Google Scholar
17. Sun, Z, Zhou, J, Ahuja, R, Phys Rev Lett 96, 055507 (2006).Google Scholar
18. Hosokawa, S et al, J Phys Conden Mat 10, 1931 (1998).Google Scholar
19. Littlewood, P B, J Phys C 13, 4855 (1980).Google Scholar
20. Lucovsky, G, White, R M, Phys Rev B 8, 660 (1973).Google Scholar
21. Edwards, A H, Pineda, A C, Schulz, P A et al, Phys Rev B 73, 045210 (2006).Google Scholar
22. Pirovano, A, Lacaita, A L, Benvenuti, A, Pellizzer, F, Bez, R, IEEE Trans ED 51, 452 (2004).Google Scholar