Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-07T21:01:42.205Z Has data issue: false hasContentIssue false

Electron Transport Through Epitaxial Metal/Semiconductor Heterostructures

Published online by Cambridge University Press:  26 February 2011

A. F. J. Levi
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. T. Tung
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. L. Batstone
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. Anzlowar
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Chantre
Affiliation:
CNET, Grenoble, France
Get access

Abstract

Abrupt, epitaxial silicide/silicon heterostructures may be grown so that, for the first time, the physics of electron transport across near perfect, single crystal, metal/semiconductor interfaces may be probed experimentally. Transport measurements through type-A and -B oriented NiSi2 layers on Si(111) substrates have revealed Schottky barrier heights differing by 140 meV. In this paper we present results of experiments designed to explore the possible role of bulk and interface defects in determining the potential barrier at these near ideal epitaxial metal-semiconductor contacts. We have found little evidence for the presence of defects and the Schottky barrier is insensitive to details of the microscopic interfacial perfection. By contrast we find that both the electrical quality and magnitude of the barrier occurring at the NiSi2 /Si(100) heterojunction are dependent upon details of the microscopic interfacial perfection.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R. T., Levi, A. F. J., and Gibson, J. M., J. Vac. Sci. Technol. in press.Google Scholar
2. Phillips, J. M. and Augustyniak, W. M., Mat. Res. Soc. Symp. Proc. 54, 307 (1986); Appl. Phys. Lett. 48, 463 (1986).CrossRefGoogle Scholar
3. Tung, R. T., Levi, A. F. J., and Gibson, J. M., Appl. Phys. Lett. 48, 635 (1986).CrossRefGoogle Scholar
4. Tung, R. T., Gibson, J. M., and Levi, A. F. J., Appl. Phys. Lett. 48, 1264 (1986).CrossRefGoogle Scholar
5. Nakata, Y., Asada, M., and Suematsu, Y., Electron. Lett. 22, 58 (1986); IEEE J. Quantum Electron. 22, 1880 (1986).CrossRefGoogle Scholar
6. Tung, R. T., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983); Appl. Phys. Lett. 42, 888 (1983).CrossRefGoogle Scholar
7. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).CrossRefGoogle Scholar
8. Hauenstein, R. J., Schlesinger, T. E., McGill, T. C., Hunt, D. B., and Schowalter, L. J., Appl. Phys. Lett. 47, 853 (1985).CrossRefGoogle Scholar
9. Tung, R. T., Levi, A. F. J., Gibson, J. M., Ng, K. K., and Chantre, A., Mat. Res. Soc. Symp. Proc. 54, 457 (1986).CrossRefGoogle Scholar
10. Tung, R. T., Ng, K. K., Gibson, J. M., and Levi, A. F. J., Phys. Rev. B33, 7077 (1986).CrossRefGoogle Scholar
11. Liehr, M., Schmidt, P. E., Le Goues, F. K., and Ho, P. S., Phys. Rev. Lett. 54, 2139 (1985). The authors’ claim that δø is zero, in contrast to all other published reports which find δø to be finite, makes the issue of assigning a value to δø a “controversial” one.CrossRefGoogle Scholar
12. Chantre, A., Levi, A. F. J., Tung, R. T., Dautremont-Smith, W. C., and Anzlowar, M., Phys. Rev. B34, 4415 (1986).CrossRefGoogle Scholar
13. Johnson, N. M., Herring, C., and Code, D. J., Phys. Rev. Lett. 56, 769 (1986).CrossRefGoogle Scholar
14. Pankove, J. I., Wance, R. O., and Berkeyheiser, J. E., Appl. Phys. Lett. 15, 1100 (1984).CrossRefGoogle Scholar
15. Pearton, S. J., Proc. Mat. Res. Soc. 59, 459 (1986).Google Scholar
16. Pankove, J. I., Lampert, M. A., and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).CrossRefGoogle Scholar
17. Seager, C. H. and Ginley, D. S., Appl. Phys. Lett. 34, 337 (1979).CrossRefGoogle Scholar
18. Johnson, N. M., Biegelsen, D. K., Moyer, M. D., Deline, V. R., and Evans, C. A. Jr, Appl. Phys. Lett. 88, 995 (1981).CrossRefGoogle Scholar