Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T07:05:42.964Z Has data issue: false hasContentIssue false

Electron Self-trapping in Ge2 Se3 and its Role in Ag and Sn Incorporation

Published online by Cambridge University Press:  22 August 2012

Arthur H. Edwards
Affiliation:
Space Vehicles Directorate, AFRL, Bldg. 914, 3550 Aberdeen Ave. SE, Kirtland AFB, NM 87117-5776, U.S.A.
Kristy A. Campell
Affiliation:
Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725 U. S. A.
Andrew C. Pineda
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131-0001 U. S. A
Get access

Abstract

We present a set of density functional theory (DFT) calculations on the electronic structure of Ag and Sn in Ge2 Se3 in a periodic model. We show that electron self-trapping is a persistent feature in the presence of many defects. Ag and Sn autoionize upon entering Ge2 Se3 becoming Ag+ and Sn2+ , respectively, and the freed electrons self trap at the lowest energy site. Both Ag and Sn can substitute for Ge, and we present formation energies as a function of Fermi level that show that Sn can substantially alter the incorporation of Ag into the Ge2Se3 network.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chua, L. O., IEEE Trans. Circuit Theory CT-18, 507 (1971)Google Scholar
2. Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., and Williams, R. S., Nature 464, 873 (2010)Google Scholar
3. Campbell, K. A., Patent no. 7,354,793, April 8, 2008.Google Scholar
4. Devasia, A., Kurinec, S., Campbell, K. A., and Raoux, S., Appl. Phys. Lett. 96, 141908 (2010).Google Scholar
5. Edwards, A. H., Campbell, K. A., and Pineda, A. C., J. Phys. Condens. Matter 24, 195801 (2012)Google Scholar
6. , J. Rennie, H. S. and Elliott, S. R., J. Non-Cryst. Solids 97-98. 1239 (1987)Google Scholar
7. Mitkova, M. and Kozicki, M. N., Kim, H. C., and Alford, T. L., J. Non-Cryst. Solids 352, 1986 (2006).Google Scholar
8. Zhou, W., Paesler, M., and Sayers, D. E., Phys. Rev. B 43, 2315 (1991).Google Scholar
9. Ploog, K., Stetter, W., and Nowitzki, A., Mater. Res. Bull. (USA) 11, 1147 (1976).Google Scholar
10. Laks, D. B., van de Walle, C. G., Neumark, G. F., Blöchl, P. E., and Pantelides, S. T., Phys. Rev. B 45, 10965 (1992).Google Scholar
11. Anderson, P. W., Phys. Rev. Lett 34, 953 (1975).Google Scholar
12. Edwards, A. H. and Campbell, K. A., in Proceedings of the 2009 Non-Volatile Memory Technology Symposium Google Scholar