Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T04:12:08.538Z Has data issue: false hasContentIssue false

Electron Paramagnetic Resonance of Cr4+ in Yx2SiO5

Published online by Cambridge University Press:  10 February 2011

Rakhim R. Rakhimov
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, VA 23504, USA
Holli D. Horton
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, VA 23504, USA
George B. Loutts
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, VA 23504, USA
Get access

Abstract

Chromium-doped yttrium orthosilicate Cr:Y2SiO5 was studied by electron paramagnetic resonance (EPR) method at 9.5–9.7 GHz. EPR transitions were observed for Cr4+ substituting Si4+ in tetrahedral sites of Y2SiO5, and orientation dependence of the single crystal EPR spectrum was studied. The ground state of Cr4+ (electron configuration 3d2) in Y2SiO5 is a spin triplet (S = 1). Rhombic symmetry of the electron magnetic dipole-dipole interaction (zero field splitting) leads to three electron spin terms Tx, Ty and Tz in the absence of the external magnetic field. We have observed the magnetically induced anti-crossing of the terms Ty and Tz.We show that in the vicinity of energy level anti-crossing the linewidths and positions of the resonance lines depend on temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deka, C., Chai, B. H. T., Shimony, Y., Zhang, X. X., Munin, E., and Bass, M., Appl. Phys. Lett. 61, 2141 (1992).Google Scholar
[2] Loutts, G., Hirnak, S, Basiev, T. T., Doroshenko, M. E., Sigachev, V. B., Shimony, Y., Deka, C., Zhang, X. X., Villeverde, A., Bass, M., and Chai, B. in Growth, Characterization and Aplications of Laser Host and Nonlinear Crystals II, edited by Chai, B. H. T., Proc. SPIE 1863, 31 (1993).Google Scholar
[3] Deka, C., Bass, M., Chai, B. H. T., and Shimony, Y., J. Opt. Soc. Am. B. 10, 1499 (1993).Google Scholar
[4] Koetke, J., Kuck, S., Peterman, K., Huber, G., Cerullo, G., Danailov, M., Magni, V., Qian, L. F., and Svelto, O., Optics Commun. 101, 195 (1993).Google Scholar
[5] Kuleshov, N.V., Mikhailov, V. P., Shcherbitsky, V. G., Menkov, B. I., Danger, T., Glynn, T.J., and Sherlock, R., Optical Materials. 4, 507 (1995).Google Scholar
[6] Hoffman, K. R., Casas-Gonzalez, J., Jacobsen, S. M., and Yen, W. M., Phys. Rev. B. 44, 12589 (1991).Google Scholar
[7] Whitmore, M. H., Sacra, A., and Singel, D., J. Chem. Phys. 98, 3656 (1993).Google Scholar
[8] Budil, D. E., Park, D. G., Burlitch, J. M., Geray, R. F., Dieckmann, R., and Freed, J. H., J. Chem. Phys. 101, 3538 (1994).Google Scholar
[9] Sharp, R. R., J. Chem. Phys. 98, 912 (1993).Google Scholar
[10] Yamauchi, S., and Pratt, D. W., Chem. Phys. Lett. 57, 410 (1978).Google Scholar
[11] Lee, K. M., Dang, L. S., Watkins, G. D., and Choyke, W. J., Solid State Commun. 37, 551 (1981).Google Scholar
[12] Kouskov, V., Sloop, D. J., Weissman, S. I., Lin, T.-S., Chem. Phys. Lett. 232, 165 (1995).Google Scholar
[13] Kobori, Y., Mitsui, M., Kawai, A., and Obi, K., Chem. Phys. Lett. 252, 355 (1996).Google Scholar
[14] Laiho, R., Afanasjev, M. M., Vlasenko, M. P., and Vlasenko, L. S., Phys. Rev. Lett. 80, 1489 (1998).Google Scholar
[15] Pilbrow, J. R.. Transition Ion Electron Paramagnetic Resonance. (Clarendon Press, Oxford, 1990), p. 102.Google Scholar