Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:44:32.861Z Has data issue: false hasContentIssue false

Electron microscopic characterization of multi-layer boron nitride nanosheets

Published online by Cambridge University Press:  11 July 2013

Muhammad Sajjad
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, P.O. Box 70377, San Juan, PR/USA 00936-8377
Peter Feng*
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, P.O. Box 70377, San Juan, PR/USA 00936-8377
*
*Corresponding author: e-mail: [email protected]
Get access

Abstract

We report on the direct synthesis of multi-layer boron nitride nanosheets (BNNSs) and their electron microscopic characterization. The synthesis process is carried out by irradiating hexagonal boron nitride (h-BN) target using short laser pulses. Scanning electron microscopy showed large area (≈50×50 μm2) flat layers of BNNSs transparent to the electron beam. Low magnification transmission electron microscope (TEM) is used to characterize different areas of nanosheets. TEM revealed that each individual nanosheet is composed of several layers. High resolution TEM (HRTEM) measurements confirmed the layered structure. HRTEM analysis of the edge of a nanosheet showed 10 layers from which we obtained the thickness (3.3nm) of an individual nanosheet. Selected area electron diffraction pattern indicated polycrystalline structure of nanosheets. Raman spectroscopy clearly identified E2g vibrational mode related to h-BN.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Geim, A. K., Novoselov, K. S., Nature Materials 6, 183 (2007).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., de Heer, W. A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Zhang, Y. B., Tan, Y. W., Stormer, H. L., Kim, P., Nature 438, 201 (2005).CrossRefGoogle Scholar
Pacile, D., Mayer, J. C., Girit, C. O., Zettl, A., Appl. Phys. Lett. 92, 133107 (2008).CrossRefGoogle Scholar
Cho, H. B., Tokoi, Y., Tanaka, S., Suzuki, T., Jiang, W., Suematsu, H., Niihara, K., Nakayama, T., Journal of Materials Science 46, 2318 (2011).CrossRefGoogle Scholar
Lin, Y., William, T. V., Connel, J. W., J. Phys. Chem. Lett. 1, 277 (2010).CrossRefGoogle Scholar
Zeng, H., Zhi, C., Zhang, Z., Wei, X., Wang, X., Guo, W., Bando, Y., Golberg, D., Nano Lett. 10, 5049 (2010).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Science 324, 1312 (2009).CrossRefGoogle Scholar
Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Kvashnin, A. G., Kvashnin, D. G., Lou, J., Yakobson, B. I., Ajayan, P. M., Nano Lett. 10, 3209 (2010).CrossRefGoogle Scholar
Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z. F., Storr, K., Balicas, L., Liu, F., Ajayan, P. M., Nature Materials 9, 430 (2010).CrossRefGoogle Scholar
Sajjad, M., Ahmadi, M., J-F Guinel, M., Lin, Y., Feng, P. X. J Mater Sci.. (2012).Google Scholar
Nag, A., Raidongia, K., Hembram, K. P. S. S., Datta, R., Waghmare, U. V., Rao, C. N. R. ACS Nano 4, 1539 (2010).CrossRefGoogle Scholar
Hoffman, M. M., Doll, G. L., Eklund, P. C., Phys. Rev. B 30, 6051 (1984).CrossRefGoogle Scholar
Sajjad, M., Feng, X. P. Low temperature synthesis of cubic boron nitride films. Appl. Phys. Lett. 99, 253109 (2011).CrossRefGoogle Scholar
Sajjad, M., Zhang, H. X., Peng, X. Y., Feng, P. X., Phys. Scr. 83, 065601 (2011).CrossRefGoogle Scholar