Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:29:29.706Z Has data issue: false hasContentIssue false

Electron Field Emission from GaN Nanotip Pyramids

Published online by Cambridge University Press:  01 February 2011

Hock M. Ng
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ, U.S.A.
Jonathan Shaw
Affiliation:
Naval Research Laboratory, Washington DC, U.S.A.
Aref Chowdhury
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ, U.S.A.
Nils G. Weimann
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ, U.S.A.
Get access

Abstract

Electron field emission was measured from GaN nanotip pyramids formed by polarity-selective chemical etching in KOH solution. The GaN samples were grown by plasma-assisted molecular beam epitaxy and consisted of regions of Ga- and N-polar GaN grown at the same time. The pyramids were formed only in the N-polar regions and have extremely sharp tips with diameters estimated to be less than 20 nm. Field emission measurements showed a characteristic Fowler-Nordheim behavior. The average turn-on field was 1.6 V/μm with a corresponding normalized field enhancement factor of about 1500.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shaw, J. L., Gray, H. F., Jensen, K. L., and Jung, T. M., J. Vac. Sci. Technol. B 14, 2072 (1996).Google Scholar
2. Terada, Y., Yoshida, H., Urushido, T., Miyake, H., and Hiramatsu, K., Jpn. J. Appl. Phys. Part 2, 41, L1194 (2002).Google Scholar
3. Sugino, T., Hori, T., Kimura, C., and Yamamoto, T., Appl. Phys. Lett. 78, 3229 (2001).Google Scholar
4. Tampo, H., Yamanaka, T., Yamada, K., Ohnishi, K., Hashimoto, M., and Asahi, H., Jpn. J. Appl. Phys. Part 2, 41, L907 (2002).Google Scholar
5. Nam, O., Bremser, M.D., Ward, B.L., Nemanich, R.J., and Davis, R.F., Jpn. J. Appl. Phys. Part 2, 36, L532 (1997).Google Scholar
6. Ward, B. L., Nam, O.-H., Hartman, J. D., English, S. L., McCarson, B. L., Schlesser, R., Sitar, Z., Davis, R. F., and Nemanich, R. J., J. Appl. Phys. 84, 5238 (1998).Google Scholar
7. Underwood, R. D., Keller, S., Mishra, U. K., Kapolnek, D., Keller, B. P., and DenBaars, S. P., J. Vac. Sci. Technol. B 16, 822 (1998).Google Scholar
8. Kozawa, T., Suzuki, M., Taga, Y., Gotoh, Y., and Ishikawa, J., J. Vac. Sci. Technol. B 16, 833 (1998).Google Scholar
9. Kozawa, T., Ohwaki, T., Taga, Y., and Sawaki, N., Appl. Phys. Lett. 75, 3330 (1999).Google Scholar
10. Ng, H.M., Weimann, N.G., and Chowdhury, A., J. Appl. Phys. 94, 650 (2003).Google Scholar
11. Wu, C.I. and Kahn, A., J. Vac. Sci. Technol. B 16, 2218 (1998).Google Scholar