Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:49:21.461Z Has data issue: false hasContentIssue false

Electron Emission from Gated Diamond Emitter Array

Published online by Cambridge University Press:  10 February 2011

Seung -Chul Ha
Affiliation:
Division of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
Dae-Hwan Kang
Affiliation:
Division of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
Byung-Sung Kim
Affiliation:
Division of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
Seok-Hong Min
Affiliation:
Research Institute of Advanced Materials, Seoul National University, Seoul, 151-742, Korea
Ki-Bum Kim
Affiliation:
Division of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
Get access

Abstract

A novel processing sequence for the formation of gated diamond field emitter arrays (triode system) is proposed and the feasibility is tested by investigating the field emission property. The processing scheme is based on the selective deposition of diamond using the well established nucleation enhanced process on silicon substrate, so called bias enhanced nucleation (BEN). Selective deposition of diamond using the same process was also demonstrated on titanium nitride (TIN) electrode layer. Our preliminary results show that the diamond field emitter is turned on at around 97 V/μm with the current level of about several μA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spindt, C. A., Brodie, I., Humphrey, S., and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).Google Scholar
2 Gorkom, G. G. P. van and Hoeberechts, A. M. E., J. Vac. Sci. Technol. B 4, 108 (1986).Google Scholar
3 Ghis, A., Meyer, R., Rambaud, P., Levy, F., and Lerouz, T., IEEE Trans. Electron Devices ED-38 2320 (1991)Google Scholar
4 Himpsel, F. J., Knapp, J. A., and Vechten, J. A. Van, Phys. Rev. 20, 624 (1974).Google Scholar
5 Hong, D. and Aslam, M., J. Vac. Sci. Technl. B 13, 427 (1995).Google Scholar
6 Geis, M. W., Efremow, N. N., and Woodhouse, J. D., IEEE Electron Device Lett. 12, 456 (1991).Google Scholar
7 Wang, C., Garcia, A., and Ingram, D. C., Electron. Lett. 27, 1459 (1991).Google Scholar
8 Zhu, W., Kochanski, G. P., Jin, S., and Seibles, L., J. Appl. Phys. 78, 2707 (1995).Google Scholar
9 Xu, N. S., Tzeng, Y., and Latham, R. V., J. Phys. D 26, 1776 (1993).Google Scholar
10 Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., Chang, R. P. H., and Gnaser, H., J. Appl. Phys. 82 (9), 4546 (1997)Google Scholar
11 Okano, Ken, Koizumi, Satoshi, Ravi, S., Silva, P., and Amaratunga, Gehan A. J. LETTER TO NATURE, 381, 140 (1996).Google Scholar
12 Okano, K., Hoshina, K., Iida, M., Koizumi, S., and Inuzuka, T., Appl. Phys. Lett., 64, 2742 (1994).Google Scholar
13 Kang, W. P., Wisitsora-at, A., Davidson, J.L., Howell, M., Li, Q., Xu, J. F., and Kems, D. V., Technical Digest of IVMC' 97, 567 (1997).Google Scholar
14 Jiang, X., Boettger, E., Paul, M., and Klages, C. P., Appl. Phys. Lett., 65, 1519 (1994).Google Scholar
15 Roberts, P. G., Milne, D. K., John, P., Jubber, M. G., and Wilson, J. I. B., J. Mater. Res., 11, 3128 (1996).Google Scholar
16 Wolter, S. D., Glass, J. T., and Stoner, B. R. J. Appl. Phys. 77 (10), 15 (1995)Google Scholar