Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:45:01.614Z Has data issue: false hasContentIssue false

Electron Beam Induced Current Imaging of Ferroelectric Thin Films

Published online by Cambridge University Press:  10 February 2011

Igor Lubomirsky
Affiliation:
University of California, Los Angeles
Tzu Yu Wang
Affiliation:
University of California, Los Angeles
Konstantin Gartsman
Affiliation:
Weizmann Insitute of Science, Rehovot, Israel
Oscar M. Stafsudd
Affiliation:
University of California, Los Angeles
Get access

Abstract

We have observed Electron Beam Induced Current imaging of thin film ferroelectrics. The Electron beam irradiation of a thin ferroelectric film creates a local temperature gradient that induces a polarization gradient and therefore a local electric field. Although the temperature difference is small the gradient is on the order of thousands K/cm and results in a corresponding electric field of a few MV/cm. The thermally induced electric field drives the electron beam created carriers toward an electrode thus inducing an externally measurable current. Despite the very small carrier life time (<1 ns) in ferroelectrics, the induced electric field is strong enough to collect carriers from a few hundred nm depth before recombination. An EBIC gain of 5 to 20 was measured experimentally with BaTiO3 and LiTaO3 films on silicon substrates. This method is insensitive to charge traps and provides a resolution better than 1 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wasilik, J. H. and Bennett, K. W., Inegrated Ferroelectrics 4, 227–30 (1994).10.1080/10584589408017025Google Scholar
2 Kwak, D.-H., Jang, B.-T., Cha, S.-Y., Lee, S.-H., Lee, C.-H., and Yu, B.-G., Integrated Ferroelectrics 13, 121–7 (1996).10.1080/10584589608013086Google Scholar
3 Dietz, G. W. and Waser, R., Thin Solid Films. 299, 53– (1997).10.1016/S0040-6090(96)09073-6Google Scholar
4 Bu, S., Chun, D., and Park, G., J. Appl. Phys. 82, 2528– (1997).10.1063/1.366063Google Scholar
5 Brazier, M., Mansour, S., Patson, E., and McElfresh, M., Integrated Ferroelectrics 18, 79– (1997).10.1080/10584589708221688Google Scholar
6 Waren, W. L., Pike, G. E., Dimos, D., and Tuttle, B. A., Integrated Ferroelectrics 18, 49– (1997).10.1080/10584589708221685Google Scholar
7 Waren, W. L., Pike, G. E., Tuttle, B. A., and Dimos, D., Appl. Phys. Lett. 70, 2010– (1997).10.1063/1.118805Google Scholar
8 Okino, H., Shimuzu, M., Horiuchu, T., Shiosaki, T., and Matsushige, K. A., Integrated Ferroelectrics 18, 63– (1997).10.1080/10584589708221686Google Scholar
9 Holeman, B. R., Infrared Physics 12, 125– (1972).10.1016/0020-0891(72)90016-4Google Scholar
10 Newbury, D.E., Joy, D. C., Echlin, P., Fiori, C. E., and Goldstein, J. I., Advanced Scanning Electron Microscopy and X-Ray Microanalysis (Plenum Press, New York & London, 1983).Google Scholar
11 Kuiken, H. K., Solid-State Electronics 19, 447–445 (1976).10.1016/0038-1101(76)90004-6Google Scholar
12 Berz, F. and Kuiken, H. K., Solid-State Electronics 19, 437– (1976).10.1016/0038-1101(76)90003-4Google Scholar
13 Ralph, J. E., Gowers, J. P., and Burgers, M. R., Appl. Phys. Lett. 41, 343– (1982).10.1063/1.93506Google Scholar
14 Russel, J. D. and Leach, C., J. Europ. Ceram. Soc. 1995, 617– (1995).10.1016/0955-2219(95)00023-NGoogle Scholar
15 Russel, J. D. and Leach, C., J. Europ. Ceram. Soc. 16, 1035– (1996).10.1016/0955-2219(96)00029-5Google Scholar
16 Aristov, V. V., Kokhanchik, L. D., Meyer, K.-P., and Blumtritt, H., Phys. Stat. Sol. A. 78, 229–36 (1983).10.1002/pssa.2210780127Google Scholar
17 Aristov, V. V., Kokhanchik, L. S., and Voronovskii, Y. I., Phys. Stat. Sol. A. 86, 133–41 (1984).10.1002/pssa.2210860113Google Scholar
18 Napchan, E., Rev. Phys. Appl. 24, 15– (1989).Google Scholar
19 Gartsman, K. G., Dedegkaev, T. T., Terekhov, A. D., and Sher, E. M., Inzhenerno-Fizicheskii Zhurnal. 31, 289–94 (1976).Google Scholar
20 Hamming, R. W., Numerical Methods for Scientists and Engineers (McGraw-Hill Book Company, Inc, 1962).Google Scholar
21 Bernasconi, P., Biaggio, I., Zgonik, M., and Gunter, P., Phys. Rev. Lett. 78, 106–9 (1997).10.1103/PhysRevLett.78.106Google Scholar
22 Holt, D. B. and Joy, D. C., SEM Microcharacterization of Semiconductors (Academic Press, London, 1989).Google Scholar
23 Lubomirsky, I., Chang, D. T., and Stafsudd, O. M., J. Appl. Phys., (in press) (1999).Google Scholar
24 Byer, R. L. and Roundy, C. B., Ferroelectrics 3, 333– (1972).10.1080/00150197208235326Google Scholar