Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:03:09.106Z Has data issue: false hasContentIssue false

Electromigration in Bicrystal Al Lines

Published online by Cambridge University Press:  15 February 2011

Hai P. Longworth
Affiliation:
IBM Corp., Technology Products Division, E. Fishkill Facility, Dpt. 295, Z/35A, Hopewell Jct., NY 12533
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We have developed a new experimental technique to study electromigration in bicrytal Al lines as a function of the type and location of the grain boundary as well as the testing temperature. The failure times of these lines are found to be lognormally distributed. The median time to failure (MTTF) depends more strongly on the boundary orientation than the type of grain boundary. The dependence of lifetimes on the type and orientation of grain boundaries, the location and appearance of the failure sites, and the measured activation energy (E.) of 0.94eV suggest that both interfacial and grain boundary diffusion contribute to failure in bicrystal lines, and likely in bamboo and near-bamboo lines as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. d'heurle, F. M. and Ho, P. S., p. 243 in Thin Film - Interdiffusion and Reactions, ed. by Poate, J., Tu, K. and Mayer, J., Electrochemical Society Inc., John Wiley and Sons, New York (1978).Google Scholar
2. Vaidya, S. and Sinha, A. K., Thin Solid Films 75, 253 (1981)Google Scholar
3. Vaidya, S., Sheng, T. T., and Sinha, A. K., Appl. Phys. Lett. 36(6), 464 (1980)Google Scholar
4. Cho, J. and Thompson, C. V., Appl. Phys. Lett. 54(25), 2577 (1989)Google Scholar
5. Longworth, Hai P. and Thompson, C. V., Appl. Phys. Lett. 60(18), 2219 (1992).Google Scholar
6. Longworth, Hai P., Sc. D. Thesis, MIT, February 1992.Google Scholar
7. Cho, Jaeshin, Ph. D. Thesis, MIT, September 1990.Google Scholar
8. Pierce, J. M. and Thomas, M. E., Appl. Phys. Lett. 39, 165 (1981).Google Scholar
9. Gangulee, A. and d&Heurle, F. M., Thin Solid Films 16, 227 (1973).Google Scholar
10. d&Heurle, F. M. and Ames, I., App. Phys. Lett. 16, 80 (1970).Google Scholar
11. Black, J. R., IEEE Trans. on Electron Devices ED– 16(4), 338 (1969).Google Scholar
12. Schreiber, H. U., Solid State Electronics 24, 583 (1981).CrossRefGoogle Scholar
13. Attardo, M. J., Rutledge, R., and Jack, R. C., J. Appl. Phys. 42(11), 4343 (1971)Google Scholar
14. LaCombe, D. J. and Parks, E. L., 24th IRPS/IEEE, 1 (1986).Google Scholar
15. Schoen, J. M., J. Appl. Phys. 51(1), 513 (1980)Google Scholar
16. Towner, Janet M., IEEE/IRPS 100 (1990)Google Scholar
17. Lloyd, J. R. and Kitchin, J., J. Appl. Phys. 69(4), 2117 (1991)Google Scholar
18. Friedel, J., Cullity, B. D., and Crussard, C., Acta Met. 1, 79 (1953).Google Scholar
19. Przybylowicz, K., p. 422 in Diffusion in Metals and Alloys, Proc. Int'l Conf., Tihany, Hungary, Sept. 1982 (Trans. Tech., Switzerland).Google Scholar
20. Baluffi, R. W., Met. Trans. B, 13B, 527 (1982)Google Scholar
21. Jaeger, W. and Gleiter, H., Scripta Met. 12, 675 (1978).CrossRefGoogle Scholar
22. Blech, I. A., J. Appl. Phys. 47(4), 1203 (1976).Google Scholar
23. Ohring, M., J. Appl. Phys. 42(7), 2653 (1971).Google Scholar
24. Rosenberg, R. and Ohring, M., J. Appl. Phys. 42(13), 5671 (1971).Google Scholar
25. Rosenberg, R., J. Vac. Sci. Tech. 9(1), 263 (1971).Google Scholar
26. Ho, P. S. and Glowinski, L. D., J. Naturforsch. 26a, 32 (1971)CrossRefGoogle Scholar
27. Lloyd, J. R. and Nakahara, S., Thin Solid Films 64, 163 (1979).CrossRefGoogle Scholar
28. English, A. T. and Kinsbron, E., J. Appl. Phys. 54(1), 268 (1983).Google Scholar