Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:50:50.044Z Has data issue: false hasContentIssue false

Electromagnetic Processing of Polymers: I. Basic Concepts and Molecular Design of The Macromolecules

Published online by Cambridge University Press:  28 February 2011

J. C. Hedrick
Affiliation:
Department of Chemistry, NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212
D. A. Lewis
Affiliation:
Department of Chemistry, NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212
T. C. Ward
Affiliation:
Department of Chemistry, NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212
J. E. Mcgrath*
Affiliation:
Department of Chemistry, NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0212
*
To whom correspondence should be addressed
Get access

Abstract

Microwave processing has been utilized to process thermosetting polymeric materials. Specifically, fundamental studies relating epoxy network generation to processing conditions have been investigated in a tunable cylindrical cavity operating at a frequency of 2.45 GHz. These studies demonstrate that fully cured networks can be generated in ten minutes with the retention of good mechanical properties. Furthermore, toughened epoxy systems which utilize carefully designed amine terminated poly(arylene ether sulfone) thermoplastics as reactive oligomers have resulted in novel phase separated morphologies. In fact, it has been demonstrated that the morphology in these multiphase systems can actually be controlled by utilizing microwave processing. Bismaleimide toughened systems, devised by similar strategies, have demonstrated a 10–20 fold reduction in the time required to achieve full cure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: IBM Research, T. J. Watson Research Center; P. 0. Box 218, Yorktown Heights, NY 10598

References

REFERENCES

1. Hedrick, J. C., Lewis, D. A., Lyle, G. D., Ward, T. C., and McGrath, J. E., Proceedings of the American Society for Composites, Fourth Technical Conference (Technomic Publishing Co., 1989) pp. 167176.Google Scholar
2. Hedrick, J. C., Lewis, D. A., Lyle, G. D., Ward, T. C. and McGrath, J. E., Poly. Mat. Eng. Sci., 60, 438 (1989).Google Scholar
3. Lewis, D. A., Hedrick, J. C., McGrath, J. E. and Ward, T. C., in Microwave Processing of Materials, eds. Sutton, W. H., Brooks, M. H. and Chabinsky, I. J. (MRS Publications, 1988) pp. 181188.Google Scholar
4. Lewis, D. A., Ward, T. C., Summers, J. D. and McGrath, J. E., Polym. Preprints, 29 (1), 174, (174).Google Scholar
5. Hedrick, J. C., Lewis, D. A., Ward, T. C. and McGrath, J. E., Polym. Preprints, 29 (1), 363, (363); 28 (2), 303 (1987).Google Scholar
6. Lyle, G. D., Hedrick, J. C., Lewis, D. A., Senger, J. S., Chen, D. H., Wu, S. D. and McGrath, J. E., in Polyimides: Materials, Chemistry and Characterization, eds. Feger, C., Khojasteh, M. M. and McGrath, J. E. (Elsevier Sci. Publishers, Amsterdam, 1989) pp. 213227.Google Scholar
7. Chen, M., McGrath, J. E. and Ward, T. C., Polm. Mat. Eng. Sci., 60, 443 (1989).Google Scholar
8. Chen, Y. P., Pollard, J. F., Graybeal, J. D. and Ward, T. C., Polym. Preprints, 29 (1), 207, (207).Google Scholar
9. Van, Q. Le and Gourdenne, A., Eur. Polym. J., 23 (10), 177, (177).Google Scholar
10. Beldjoudi, N., Bouazizi, A., Douibi, D. and Gourdenne, A., Enr. Polym. J., 24 (1) (1988).Google Scholar
11. Karmazsin, E. and Satre, P., Thermochimica Acta, 93, 305 (1985).Google Scholar
12. Senger, S. M., Jow, J., Delong, J. D. and Hawley, M., SAMPE Quarterly, 20 (2), 14, (14).Google Scholar
13. Jow, J., Delong, J. D. and Hawley, M. C., SAMPE Quarterly, 20 (2) (1989).Google Scholar
14. Jow, J., Hawley, M. C., Finzel, M. and Kern, T., Polym. Eng. Sci., 28 (22), 1450, (1450).Google Scholar
15. Jow, J., Hawley, M. C., Finzel, M. C. and Amussen, J. A., Rev., Sci., Instrum., 60 (1) (1989).Google Scholar
16. Jullien, H. and Valot, H., Polymer, 24, 810 (1983); 26, 506 (1985).Google Scholar
17. Nakagawa, K. and Konaka, T., Polymers, 27, 1030 (1986); 27, 1553 (1986).Google Scholar
18. Konaku, T., Nakagawa, K. and Yamakawa, S., Polymer, 26, 462 (1985); 26, 1929 (1985).Google Scholar
19. Asmussen, J., Lin, H., Manring, B. and Fritz, R., Rev. Sci. Instrum., 58 (8), 1477, (1477).Google Scholar
20. Stenzenberger, H., Brit. Polym. J., 20, 383 (1988).Google Scholar
21. Kunz-Douglass, S., Beaumont, P. W. R. and Ashby, M. F., J. Mat. Sci., 15, 1109 (1980).Google Scholar
22. Kinloch, A. J., Shaw, S. J., Tod, D. A. and Hunston, D. L., Polymer, 24, 1341 (1983); 24, 1355 (1983).Google Scholar
23. Yee, A. F. and Pearson, R. A., J. of Mat. Sci., 21, 2462 (1986); 21, 2475 (1986).Google Scholar
24. Kim, S. C. and Brown, H. R., J. Mat. Sci., 22, 2589 (1987).Google Scholar
25. Manzione, L. T., Gillham, J. K. and McPherson, C. A., J. Appl. Polym. Sci., 26, 889 (1981); 26, 906 (1981).Google Scholar