Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:47:47.570Z Has data issue: false hasContentIssue false

Electrokinetic Phenomena in Montmorillonite

Published online by Cambridge University Press:  21 March 2011

V. Marry
Affiliation:
ANDRA and Laboratoire Liquides Ioniques et Interfaces Chargées, case courrier 51, UniversitéP.et M. Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France
J.-F. Dufrêche
Affiliation:
ANDRA and Laboratoire Liquides Ioniques et Interfaces Chargées, case courrier 51, UniversitéP.et M. Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France
O. Bernard
Affiliation:
ANDRA and Laboratoire Liquides Ioniques et Interfaces Chargées, case courrier 51, UniversitéP.et M. Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France
P. Turq
Affiliation:
ANDRA and Laboratoire Liquides Ioniques et Interfaces Chargées, case courrier 51, UniversitéP.et M. Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France
Get access

Abstract

Clays present remarkable electrokinetic features since they exist from very dilute colloidal state to nanoporous materials, according to the ration water/clay. The case of low volume fraction Vwater/Vtot which corresponds to compact systems is examined. The ionic distributions havebeen evaluated from Poisson-Boltzmann like models and compared to discrete solvent simulations. Electroosmosis and conductance ha v ebeen calculated, in the framework of the Mean Spherical Approximation (MSA) introduced in the Fuoss-Onsager transport theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boek, E.S., Coveney, P.V. and Skippe, N.T. Jr,. Am. Chem. Soc., 117 (1995) 12608.Google Scholar
2. Chang, F-R.C., Skippearnd, N.T. Sposito, G., Langmuir, 13 (1997) 2074.Google Scholar
3. Delville, A., Langmuir, 8 (1992) 1796.Google Scholar
4. Karaborni, S., Smit, B., Heidug, W., Urai, J. and Oort, E. van, Science, 271 (1996) 1102.Google Scholar
5. Siquiera, A.V.C de, Skipper, N.T., Coveney, P.V. and Boek, E.S., Molecular Physics, 92 (1997) 1.Google Scholar
6. Skipper, N.T., Sposito, G. and Chang, F-R.C., Clays Clay Miner., 43 (1995) 294.Google Scholar
7. Chang, F-R.C., Skippearnd, N.T. Sposito, G., Langmuir, 14 (1998) 1201.Google Scholar
8. Delville, A., J. Phys. Chem., 97 (1993) 9703.Google Scholar
9. Shroll, R.M. and Smith, D.E., J. Chem. Phys., 111 (1999) 9025.Google Scholar
10. Smith, D.E., Langmuir, 14 (1998) 5959.Google Scholar
11. Delville, A., Langmuir, 6 (1990) 1289.Google Scholar
12. Delville, A. and Laszlo, P.,New J. Chem., 13 (1989) 481.Google Scholar
13. Dubois, M., Zemb, T., Belloni, L., Delville, A., Levitz, P. and Setton, R., J. Chem. Phys., 96 (1992) 2278.Google Scholar
14. Lehmani, A., Bernard, O. and Turq, P.,J. Stat. Phys., 89 (1997) 379.Google Scholar
15. Maegdefrau, E. and Hofmann, U., Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem, 98 (1937) 299.Google Scholar
16. Brindley, G.W. and Brown, G., Crystal Structures of Clay Minerals and their X-ray Identification, Mineralogical Society, London, 1980, Chapter 3.Google Scholar
17. Skipper, N.T., Chang, F-R.C. and Sposito, G., Clays and Clay Miner., 43 (1995) 285.Google Scholar
18. Bernard, O., Kunz, W., Turq, P. and Blum, L., J. Phys. Chem. 95 (1991) 9508 Google Scholar
19. Turq, P., Blum, L., Bernard, O. and Kunz, W., J. Phys. Chem. 99 (1995) 822 Google Scholar
20. Chhih, A., Turq, P., Bernard, O., Barthel, J.M.G. and Blum, L., Ber. Bunsenges Phys. Chem. 12 (1994) 1516 Google Scholar