Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:25:28.447Z Has data issue: false hasContentIssue false

Electrodeposition of Three-Dimensionally Periodic Metal Meshes and Spheres

Published online by Cambridge University Press:  17 March 2011

Lianbin Xu
Affiliation:
Department of Chemistry, University of New Orleans, New Orleans, LA 70148-2820 the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820
Weilie L. Zhou
Affiliation:
the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820
Ray H. Baughman
Affiliation:
Honeywell Int., Materials Laboratory, Morristown, NJ 07962-1021
Anvar A. Zakhidov
Affiliation:
Honeywell Int., Materials Laboratory, Morristown, NJ 07962-1021
John B. Wiley
Affiliation:
Department of Chemistry, and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 E-mail: [email protected]
Get access

Abstract

Electrochemical methods have been used to produce three-dimensionally periodic metal meshes and spheres. Nickel is initially deposited into porous opal sheets. The opals themselves consist of close-packed silica spheres, which serve as a template for the growth of the nickel arrays within the void space between SiO2 spheres. Dissolution of the SiO2 spheres results in open, three-dimensionally periodic nickel mesh structures. The metal meshes can then be oxidized in air to produce nonconducting NiO meshes. This results in an inverse template that can be used for the growth of three-dimensionally periodic metal sphere arrays. Details on the preparation and characterization of these materials are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xia, Y., Gates, B., Ying, Y., and Lu, Y., Adv. Mater., 12, 693 (2000).Google Scholar
2. Holland, B. T., Blanford, C. F., and Stein, A., Science, 281, 538 (1998).Google Scholar
3. Wijnhoven, J. E. G. J., and Vos, W. L., Science, 281, 802 (1998).Google Scholar
4. Vlasov, Y. A., Yao, N., and Norris, D. J., Adv. Mater., 11, 165 (1999).Google Scholar
5. Velev, O. D., Tessier, P. M., Lenhoff, A. M., and Kaner, E. W., Nature, 401, 548 (1999).Google Scholar
6. Johnson, S. A., Ollivier, P. J., and Mallouk, T. E., Science, 283, 963 (1999).Google Scholar
7. Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S. O., Marti, J., and Ralchenko, V. G., Science, 282, 897 (1998).Google Scholar
8. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G. A., Toader, O., and Driel, H. M. van, Nature, 405, 437 (2000).Google Scholar
9. Zakhidov, A. A., Baughman, R. H., Khayrullin, I. I., Udod, I., Kozlov, M., Eradat, N., Vardeny, V. Z., Sigalas, M., and Biswas, R., Synth. Metals, 116, 419 (2001).Google Scholar
10. Yan, H., Blanford, C. F., Holland, B. T., Parent, M., Smyrl, W. H., and Stein, A., Adv. Mater., 11, 1003 (1999).Google Scholar
11. Jiang, P., Cizeron, J., Bertone, J. F., and Colvin, V. L., J. Am. Chem. Soc., 121, 7957 (1999).Google Scholar
12. Braun, P. V., and Wiltzius, P., Nature, 402, 603 (1999).Google Scholar
13. Xu, L., Zhou, W. L., Frommen, C., Baughman, R. H., Zakhidov, A. A., Malkinski, L., Wang, J.-Q., and Wiley, J. B., Chem. Commun., 997 (2000).Google Scholar
14. Wijnhoven, J. E. G. J., Zevenhuizen, S. J. M., Hendriks, M. A., Vanmaekelbergh, D., Kelly, J. J., and Vos, W. L., Adv. Mater., 12, 888 (2000).Google Scholar
15. Bartlett, P. N., Birkin, P. R., and Ghanem, M. A., Chem. Commun., 1671 (2000).Google Scholar
16. Rengarajan, R., Jiang, P., Colvin, V., and Mittleman, D., Appl. Phys. Lett., 77, 3517 (2000).Google Scholar
17. Xu, L., Zhou, W. L., Kozlov, M. E., Khayrullin, I. I., Udod, I., Zakhidov, A. A., Baughman, R. H., and Wiley, J. B., J. Am. Chem. Soc. (in press).Google Scholar
18. (a) Deniskina, N. D., Kalinin, D. V., and Kazantseva, L. K., Gem Quality Opals: Synthetic and Natural Genesis, Nauka, Novosibirsk, 1988 (in Russian); (b) A. P. Philips, J. Mater. Sci. Lett., 8, 1371 (1987); and (c) P. J. Darragh, A. J. Gaskin, and J. V. Sanders, Scient. Amer., 234, 84 (1976).Google Scholar