Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:30:58.386Z Has data issue: false hasContentIssue false

Electrodeposition of Group III Doped PbTe Nanowires

Published online by Cambridge University Press:  01 February 2011

Peter Hillman
Affiliation:
[email protected], UC Berkeley, Department of Chemistry, Berkeley, California, United States
Angelica M Stacy
Affiliation:
[email protected], UC Berkeley, Department of Chemistry, Berkeley, California, United States
Get access

Abstract

Nanowire arrays of PbTe were electrodeposited into porous alumina templates with 40nm pores. Citric acid was used as a complexing agent for HTeO2 + shifting the reduction potential of HTeO2 +/Te closer to that of Pb2+/Pb. Compositional analysis of the wires grown with the complexing agent show a 1:1 ratio of Pb:Te without any excess tellurium. Group III elements (In3+ and Tl+) can be added to the deposition solution and incorporated into the nanowires. It is proposed that indium incorporates into the PbTe lattice in a high energy interstitial site causing the lattice parameter to increase linearly with increasing indium incorporation. The addition of thallium to the deposition solution leads to a mixture of PbTe and TlTe nanowires. Upon annealing, the TlTe melts incongruently to Tl5Te3, which then alloys with PbTe, thereby increasing the lattice parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 DiSalvo, F. Science Science, 285, 703 (1999).Google Scholar
2 Winder, E.J. Ellis, A. B. and Lisensky, G.C., J. Chem Educ Educ., 73, 940 (1996).Google Scholar
3 Gosney, W. B. Principles of Refrigeration Refrigeration; Chap 1, Cambridge University, Cambridge, U.K.; (1982).Google Scholar
4 Vining, C. B. Nat. Mat Mat., 8, 83 (2009).Google Scholar
5 Hicks, L.D. and Dresselhaus, M. S. Phys. Rev. B47, 16631 (1993).Google Scholar
6 Hicks, L.D. and Dresselhaus, M. S. Phys. Rev. B47, 12727 (1993).Google Scholar
7 Hicks, L.D. Harman, T.C. Sun, X. and Dresselhaus, M. S. Dresselhaus, Phys. Rev. B B53 10493 (1996).Google Scholar
8 Harman, T. C. Taylor, P. J. Spears, D. L. and Walsh, M.P. J. Electron. Mater Mater., 29, L1 (2000).Google Scholar
9 Harman, T. C. Spears, D. L. and Walsh, M. P. J. Electron. Mater Mater., 28, L1 (1999).Google Scholar
10 Koga, T. Harman, T. C. Cronin, S. B. and Dresselhaus, M. S. Phys. Rev. B60, 14286 (1999).Google Scholar
11 Cho, S. DiVenere, A. Wong, G. K. Ketterson, J. B. and Meyer, J. R. Phys Rev B. Condens. Matter Matter, 59, 10691 (1999).Google Scholar
12 Venkatasubramanian, R. Colpitts, T. Watko, E. and Hutchby, J. in Proceedings of the IEEE 15th International Conference on Thermoelectrics Thermoelectrics, p. 454 (1996).Google Scholar
13 Harman, T. C. Spears, D. L. and Manfra, M. J. J. Electron. Mater Mater., 25, 1121 (1996).Google Scholar
14 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science, 303, 818 (2004).Google Scholar
15 Martin-Gonzalez, M. S., Prieto, A. L. Gronsky, R. Sands, T. Stacy, A. M. J. Electrochem. Soc. Soc., 149, C546 (2002).Google Scholar
16 Prieto, A. L. Martin-Gonzalez, M., Keyani, J. Gronsky, R. Sands, T. and Stacy, A. M. JACS, 125, 2388 (2003).Google Scholar
17 Martin-Gonzalez, M., Prieto, A. L. Gronsky, R. Sands, T. and Stacy, A. M. Adv. Mater., 15, 1003 (2003)Google Scholar
18 Martin-Gonzalez, M., Snyder, G. J. Prieto, A. L. Gronsky, R. Sands, T. and Stacy, A. M. Nano Lett. 3, 973 (2003).Google Scholar
19 Xiao, F. Yoo, B. Ryan, M. A. Lee, K. H. and Myung, N. V. Electochim. Acta, 52, 1101 (2006).Google Scholar
20 Saloniemi, H. Kanniainen, T. Ritala, M. and Leskela, M. Thin Solid Films Films, 78, 326 (1998).Google Scholar
21 Chen, L. Hu, H. Li, Y. Chen, G. Yu, S. and Wu, G. Chem. Lett. 35, 170 (2006).Google Scholar
22 Wise, F. W. Acc. Chem. Res., 33, 773 (2000).Google Scholar
23 Dughaish, Z. H. Phys. B322, 205 (2002).Google Scholar
24 Masuda, H. and Fukuda, K. Science, 268, 1466 (1995).Google Scholar
25 Saloniemi, H. Kanniainen, T. Ritala, M. and Leskela, M. Thin Solid Films Films, 326, 78 (1998).Google Scholar
26 Xiao, F. Yoo, B. Ryan, M. A. Lee, K. H. and Myung, N. V. Electochim. Acta, 52, 1101 (2006).Google Scholar
27 Yang, Y. Taggart, D. K. Brown, M. A. Xiang, C. Kung, S. Yang, F. Hemminger, J. C. and Penner, R. M. ACS Nano Nan., 4144 (2009).Google Scholar
28 Ishizaki, T. Ohtomo, T. and Fuwa, A. J. Phys. D: App. Phys., 37, 255 (2004).Google Scholar
29 Ishizaki, T. Ohtomo, T. and Fuwa, A. J. Electrochem. Soc., 151, C161 (2004).Google Scholar
30 Semiletov, I. A. Kristallografiya, 21, 752 (1976).Google Scholar
31 Belokon, S. A. Larchuk, S. D. and Plyatsko, S. V. Neorg. Mater Mater., 24, 1618 (1988).Google Scholar
32 Samoilov, A. M. Buchnev, S. A. Dolgopolova, E. A. Synorov, Y. V. and Khoviv, A. M. Neorg. Mater., 40, 414 (2004).Google Scholar
33 Rustamov, P. G. Alidzhanov, M. A. and Abilov, C. I. Phys Stat. Sol. 12, K103 (1972).Google Scholar
34 Heremans, J. P. Jovovic, V. Toberer, E. S. Saramat, A. Kurosaki, K. Charoenphakdee, A. Yamanaka, S., and Snyder, G. J. Science, 321, 554 (2008).Google Scholar