Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:35:20.091Z Has data issue: false hasContentIssue false

Electrodeposition of Bi2Te3 Nanowire Composites

Published online by Cambridge University Press:  01 February 2011

Amy L. Prieto
Affiliation:
Department of Chemistry, University of California, Berkeley
Melissa S. Sander
Affiliation:
Department of Chemistry, University of California, Berkeley
Angelica M. Stacy
Affiliation:
Department of Chemistry, University of California, Berkeley
Ronald Gronsky
Affiliation:
Department of Materials Science, University of California, Berkeley Berkeley, CA, 94720
Timothy Sands
Affiliation:
Department of Materials Science, University of California, Berkeley Berkeley, CA, 94720
Get access

Abstract

Widespread applications of thermoelectric materials are limited due to low efficiency. Currently, the most widely used thermoelectric devices consist of alloys based on Bi2Te3. In such devices, the thermoelectric figure-of-merit (ZT) of bulk Bi2Te3 has been increased through doping. It is postulated that further enhancements in ZT may be attained by engineering the microstructure of the material to enhance carrier mobility while suppressing the phonon component of the thermal conductivity. This may be achieved by fabricating Bi2Te3 in the form of one-dimensional (1D) nanowires. We have deposited nanowires of Bi2Te3 with two different diameters (200 nm and 40 nm) by electrodeposition into porous anodic alumina. Characterization of the Bi2Te3/porous Al2O3 composite materials has been accomplished using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) has been used to determine the stoichiometry of the wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Hicks, L. D.; Dresselhaus, M. S., Phys. Rev‥ 1993, 47, 12727.Google Scholar
2) Hicks, L. D.; Dresselhaus, M. S., Phys. Rev‥ 1993, 47, 16631.Google Scholar
3) Hicks, L. D.; Harman, T. C.; Sun, X.; Dresselhaus, M. S., Phys. Rev‥ 1996, 53, 10493.Google Scholar
4) Harman, T. C.; Spears, D. L.; Walsh, M. P., J. Electron. Mater. 1999, 28, L1–L4.Google Scholar
5) Harman, T. C.; Spears, D. L.; Manfra, M. J., J. Electron. Mater. 1996, 25, 1121.Google Scholar
6) Koga, T.; Harman, T. C.; Cronin, S. B.; Dresselhaus, M. S., Phys. Rev‥ 1999, 60, 14286.Google Scholar
7) Harman, T. C.; Taylor, P. J.; Spears, D. L.; Walsh, M. P., J. Electron. Mater. 2000, 29, L1.Google Scholar
8) Venkatasubramanian, R.; Colpitts, T.; Watko, E.; Hutchby, J., IEEE 15th International Conference on Thermoelectrics 1996, 454.Google Scholar
9) Cho, S.; DiVenere, A.; Wong, G. K.; Ketterson, J. B.; Meyer, J. R., Physical Review B- Condensed Matte. 1999, 59, 10691.Google Scholar
10) Martin, C. R., Adv. Mater. 1991, 3, 457.Google Scholar
11) Brumlik, C. J.; Martin, C. R., J. Am. Chem. Soc. 1991, 113, 3174.Google Scholar
12) Shingubara, S.; Okino, O.; Sayama, Y.; Sakaue, H.; Takahagi, T., Jpn. J. Appl. Phys. 1997, 36, 7791.Google Scholar
13) Fleurial, J.-P.; Borshchevsky, A.; Ryan, M. A.; Phillips, W., Thermoelectric Microcoolers for Thermal Management Applications; IEEE: Dresden, Germany, 1997; 16, 641.Google Scholar
14) Sapp, S. A.; Lakshmi, B. B.; Martin, C. R., Advan. Mater. 1999, 11, 402.Google Scholar
15) Takahashi, M.; Katou, Y.; Nagata, K.; Furuta, S., Thin Solid Film. 1994, 240, 70.Google Scholar
16) Zhang, Z.; Gekhtman, D.; Dresselhaus, M. S.; Ying, J. Y., Chem. Mater. 1999, 11, 1659.Google Scholar
17) Keller, F.; Hunter, M. S.; Robinson, D. L., J. Electrochem. Soc. 1953, 100, 411.Google Scholar