Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:37:21.675Z Has data issue: false hasContentIssue false

Electrochemical Tuning of Single-Wall Carbon Nanotube Mat and Investigations on Actuator Mechanism

Published online by Cambridge University Press:  01 February 2011

S. Gupta*
Affiliation:
Department of Physics and Materials Science, Southwest Missouri State University, Springfield, MO 65804–0027
M. Hughes
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
J. Robertson
Affiliation:
Engineering Department, University of Cambridge, Cambridge CB2 1PZ, UK
*
* E-mail address: [email protected]
Get access

Abstract

Electrochemical tuning of single-wall carbon nanotubes has been investigated using in situ Raman spectroscopy. We built a linear actuator from single-wall carbon nanotube mat and studied in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide solutions. The variation of bonding with electrochemical biasing was monitored using in situ Raman. This is since Raman can detect changes in C-C bond length: the radial breathing mode (RBM) at ∼190 cm−1 varies inversely with the nanotube diameter and the G band at ∼1590 cm−1 varies with the axial bond length. In addition, the intensities of both the modes vary significantly in a nonmonotonic manner pointing at the emptying/depleting or filling of the bonding and anti-bonding states - electrochemical charge injection. We discuss the variation of spectroscopic observables (intensity/frequency) of these modes providing valuable information on the charge transfer dynamics on the single-wall carbon nanotubes mat surface. We found the in-plane compressive strain (∼ -0.25%) and the charge transfer per carbon atom (fc ∼ -0.005) as an upper bound for the electrolytes used i.e. CaCl2. These results can be quantitatively understood in terms of the changes in the energy gaps between the one-dimensional van Hove singularities in the electron density of states arising possibly due to the alterations in the overlap integral of π bonds between the p orbitals of the adjacent carbon atoms. Moreover, the extent of variation of the absolute potential of the Fermi level or alternatively modification of band gap is estimated from modeling Raman intensity to be around 0.1 eV as an upper bound for CaCl2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terrones, M., Banhart, F., Grobert, N., Charlier, J.-C., Terrones, H. and Ajayan, P.M., Phys. Rev. Lett. 89, 075505 (2002);Google Scholar
Banhart, F., Nano Lett. 1, 329 (2001).Google Scholar
2. Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature, 381, 678 (1996).Google Scholar
3. Bonnard, J. M., Savetat, J. P., Stockli, T., de Heer, W. A., Forró, L., and Chatelain, A., Appl. Phys. Lett. 73, 918 (1998).Google Scholar
4. Gao, B., Kelinhammes, A., Tang, X. P., Bower, C., Wu, Y., and Zhou, O., hem. Phys. Lett. 307, 153 (1999);Google Scholar
Liu, J., et. al., Science, 280, 1253 (1998).Google Scholar
5. Kane, C. L. and Mele, E. J., Phys. Rev. Lett. 78, 1932 (1997).Google Scholar
6. Gupta, S., Hughes, M., Windle, A. H., and Robertson, J., J. Appl. Phys. (2003) (Submitted) and references therein.Google Scholar
7. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S., and Kertesz, M., Science, 284, 1340 (1999).Google Scholar
8. Hubner, J. E., et. al. Proc. Roy. Soc. Lond. A 453, 2185 (1997).Google Scholar
9. Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature, 381, 678 (1996).Google Scholar
10. Falvo, M. R., Curry, G. J., Taylor, R. M., Chi, V., Brooks, F. P., Washburn, S., and Superfine, R., Nature, 389, 582 (1997).Google Scholar
11. Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., Nature, 382, 54 (1996).Google Scholar
12. Dresselhaus, M. S. and Dresselhaus, G., in Light Scattering in Graphite Intercalation Compounds, Topics in Applied Physics Series, Vol. 53 edited by Cardona, M. and Güntherodt, G. (Springer-Verlag, Berlin, 1982, p. 3).Google Scholar
14. Gupta, S., Hughes, M., Windle, A. H., and Robertson, J., Diam. and Relat. Materials, 13, (2003).Google Scholar
15. Marquardt, D. W., J. Soc. Indis. Appl. Math. 11, 431 (1963).Google Scholar
16. Hughes, M., Shaffer, M. S. P., Renouf, A. C., Singh, C., Chen, G. Z., Fray, D. J., and Windle, A. H., Adv. Materials, 14, 382 (2002).Google Scholar
17. Claye, A. S., Fischer, J. E., Huffman, C. B., Rinzler, A. G., and Smalley, R. E., J. Electrochm. Soc. 147, 2845 (2000).Google Scholar
18. Liu, C., Bard, A. J., Wudl, F., Heitz, I., and Heath, J. R., Electrochem. Solid-State Lett. 2, 577 (1999).Google Scholar
19. Wood, J. R., Frogley, M. D., Meurs, E. R., Prins, A. D., Peijs, T., Dubstan, D. J., and Wagner, H. D., J. Phys. Chem. B 103, 10 388 (1999).Google Scholar
20. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., and Smalley, R. E., Science, 275, 187 (1997).Google Scholar
21. Dresselhaus, M. S. and Eklund, P. C., Adv. Phys. 49, 705 (2000).Google Scholar
22. Reich, S., Thomsen, C., and Ordejón, P., Phys. Rev. B 65, 15 3407 (2002);Google Scholar
Sandler, J., Shaffer, M. S. P., Windle, A. H., Halsall, M. P., Montes-Morán, M. A., Cooper, C. A., and Young, R. J., Phys. Rev. B 67, 035417 (2003) and references therein.Google Scholar
23. An, C. P., Zardeny, Z. V., Iqbal, Z., Spinks, G., Baughman, R. H., and Zakhidov, A., Synth. Met. 116, 411 (2001).Google Scholar
24. Kavan, L., Rapta, P., Dunsch, L., Bronikowski, M. J., Willis, P., and Smalley, R. E., J. Phys. Chem. 105 B, 10 764 (2001).Google Scholar
25. Duesburg, G. S., unpublished results.Google Scholar
26. Chan, C. T., Kamitakahara, W. A., Ho, K. M., and Eklund, P. C., Phys. Rev. Lett. 58, 1528 (1987);Google Scholar
Pietronero, L. and Strässler, S., Phys. Rev. Lett. 47, 593 (1981).Google Scholar
27. Ghosh, S., Sood, A. K., and Rao, C. N. R., J. Appl. Phys. 92, 1165 (2002);Google Scholar
Okazaki, K. -i., Nakato, Y., and Murakoshi, K., Phys. Rev. B 68, 035434 (2003);Google Scholar
Charlier, J. -C. and Lambin, Ph., Phys. Rev. B 57, R15 037 (1998).Google Scholar