Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:27:53.531Z Has data issue: false hasContentIssue false

Electrochemical Synthesis and Processing of Materials: From Fractal Electrodes to Epitaxial Thin Films

Published online by Cambridge University Press:  10 February 2011

Fereydoon Family*
Affiliation:
Department of Physics, Emory University, Atlanta GA 30322
Get access

Abstract

Electrochemical processes hold great promise as flexible and effective tools for synthesis and processing of a wide range of materials from fractal electrodes to epitaxial nanostructures. The key to successful application of electrochemical techniques is in understanding the kinetic processes which control the evolution and the morphology of the surface at the solid-liquid interface. This paper provides a review of recent advances made by different electrochemical communities in recent years in studies of the growth and modification of a wide variety of materials. The topics covered include studies of pattern formation and growth of dendritic and fractal structures in electrode-position, kinetic roughening and dynamic scaling of surfaces fluctuations during electrochemical deposition and dissolution, as well as recent progress in electrochemical growth of epitaxial layers and nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Family, F. and Landau, D. P., eds., Kinetics of Aggregation and Gelation, North-Holland, Amsterdam (1984).Google Scholar
2. Stanley, H. E. and Ostrowsky, N., eds., On Growth and Form: Fractal and Nonfractal Patterns in Physics, Martinus Nijhof, Dordrecht (1986).Google Scholar
3. Vicsek, T., Fractal Growth Phenomena, World-Scientific, Singapore (1989).Google Scholar
4. Avnir, D., editor, The Fractal Approach to Heterogeneous Chemsitry, Wiley, New York (1989).Google Scholar
5. Bunde, A. and Havlin, S., editors, Fractals and Disordered Systems, Springer-Verlag, Berlin (1991).Google Scholar
6. Family, F., Meakin, P., Sapoval, B. and Wool, R., eds., Fractal Aspects of Materials, Mat. Res. Soc, Pittsburgh (1993).Google Scholar
7. Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
8. Langer, J. S., Rev. Mod. Phys. 52, 1 (1980);Google Scholar
Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 243, 1150 (1989).Google Scholar
9. Sheldon, S. and Downing, G.M., Phys. Rev. 1, 51 (1893).Google Scholar
10. Brady, R. M. and Ball, R. C., Nature 309, 225 (1984).Google Scholar
11. Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).Google Scholar
12. Swada, Y., Dougherty, A., and Gollub, J. P., Phys. Rev. Lett. 56, 1260 (1986).Google Scholar
13. Grier, D., Ben-Jacob, E., Clarke, R. and Sander, L.M., Phys. Rev. Lett. 56, 1264(1986).Google Scholar
14. Sander, L. M., in The Physics of Structure Formation, edited by Guttinger, W. and Dangelmayr, G., Springer-Verlag, Berlin (1987), p. 257.Google Scholar
15. ArgFaragoul, F., Arneodo, A., Grasseau, G. and Swinney, H. L., Phys. Rev. Lett. 61, 2558 (1988).Google Scholar
16. Melrose, J. R. and Hibbert, D. B., Phys. Rev. A 38, 1036 (1988).Google Scholar
17. Ben-Jacob, E., Garik, P., Muller, T. and Grier, D., Phys. Rev. A 38, 1370(1988).Google Scholar
18. Suter, R.M. and Wong, P., Phys. Rev. B 39, 4536 (1989).Google Scholar
19. Hibbert, D. B. and Melrose, J. R., Proc. R. Soc. Lond. A 423, 149(1989).Google Scholar
20. Kahanda, G.L. M.K. S. and Tomkiewicz, M., J. Electrochem. Soc. 136, 1497(1989).Google Scholar
21. Garik, P., Barkey, D. P., Ben-Jacob, E., Botchner, E., Broxholm, N., Miller, B., Orr, B. and Zamir, R., Phys. Rev. Lett. 62, 2703 (1989).Google Scholar
22. Barkey, D. P., Muller, R.H. and Tobias, C. W., J. Electrochem. Soc. 136, 2199(1989).Google Scholar
23. Barkey, D. P., Muller, R.H. and Tobias, C. W., J. Electrochem. Soc 136, 2207(1989).Google Scholar
24. Melrose, J. R., Hibbert, D. B. and Ball, R. C., Phys. Rev. Lett. 65, 3009 (1990).Google Scholar
25. Fleury, V., Chazalviel, J.-N., Rosso, M. and Sapoval, B., J. Electroanal. Chem. 290, 249(1990).Google Scholar
26. Barkey, D. P. and LaPorte, D. P., J. Electrochem. Soc. 137, 1655 (1990).Google Scholar
27. Chazalviel, J.-N., Phys. Rev. A 42, 7355 (1990).Google Scholar
28. Trigueros, P. P., Claret, J., Mas, F., and Saguées, F., J. Electroanal. Chem. 312, 219(1991).Google Scholar
29. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, San Francisco (1982).Google Scholar
30. Family, F. and Vicsek, T., eds., Dynamics of Fractal Surfaces, World-Scientific, Singapore (1991).Google Scholar
31. Barabási, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth, Cambridge Univ. Press, Cambridge (1995).Google Scholar
32. Family, F. and Vicsek, T., J. Phys. A 18, L75 (1985).Google Scholar
33. Bursill, L.A., Julin, P. and Xudong, F., Int. J. Mod. Phys. B 5, 1377(1991).Google Scholar
34. Kahanda, G. L. M. K. S., Zou, X., Farrell, R. and Wong, P., Phys. Rev. Lett. 68, 3741 (1992).Google Scholar
35. Iwasaki, H. and Yoshinobu, T., Phys. Rev. B 48, 8282 (1993).Google Scholar
36. Iwamoto, A., Yoshinobu, T. and Iwasaki, H., Phys. Rev. Lett. 72, 4025 (1994).Google Scholar
37. Iwasaki, H., Iwamoto, A., Sudoh, K. and Yoshinobu, T., in Fractal Aspects of Materials, Family, F., Meakin, P., Sapoval, B. and Wool, R., eds., Mat. Res. Soc, Pittsburgh (1993), p. 159.Google Scholar
38. Fernandes, M. G. and Latanision, R. M., and Searson, P. C., Phys. Rev. B 47, 11749 (1993).Google Scholar
39. Wehrli, , J. Colloid Int. Sci. 132, 230(1989).Google Scholar
40. Sieradzki, K., Corderman, R. R., Shukla, K. and Newman, R. C., Philos. Mag. A 4, 713 (1989).Google Scholar
41. Vela, M. E., Anderasen, G., Salvarezza, R. C., Hernández-Creus, A., and Arvia, A. J., Phys. Rev. B 53, 10217 (1996).Google Scholar
42. Kolb, D. M., in Advances in Electrochemistry and Eletrochemical Engineering, Vol. II, Gerischer, H. and Tobias, C. W., editors, Wiley, New York (1978), p. 125.Google Scholar
43. Jüttner, K. and Lorenz, W.J., Z. Phys. Chem. 122, 163(1980).Google Scholar
44. Magnussen, O.M., Hotlos, J., Nichols, R. J., Kolb, D. M., and Behm, R. J., Phys. Rev. Lett. 64, 2929(1990).Google Scholar
45. Suggs, D. W. and Stickney, J. L., J. Phys. Chem. 95, 10056(1991).Google Scholar
46. Manne, S., Hansma, P. K., Massie, J., Elings, V. B., and Gewirth, A. A., Science 251, 133 (1991).Google Scholar
47. Tadjeddine, A., Guay, D., Ladouceur, M., and Tourillon, G., Phys. Rev. Lett. 66, 2235 (1991).Google Scholar
48. Switzer, J. A., Raffaelle, R. F., Phillips, R. J., Hung, C.-J. and Golden, T. D., Science 258, 1918 (1992).Google Scholar
49. Beryfogle, B. E., Phillips, R. J. and Switzer, J. A., Chem. Mater. 4, 1356(1992).Google Scholar
50. Golan, Y., Margulis, L., Rubinstein, I. and Hodes, G., Langmuir 8, 749 (1992);Google Scholar
Golan, Y., Margulis, L., Hodes, G., Rubinstein, I. and Hutchison, J. L., Surf. Sci. 311, L633 (1994).Google Scholar
51. Suggs, D. W. and Stickney, J. L., Surf. Sci. 290, 362 (1993).Google Scholar
52. Suggs, D.W. and Stickney, J. L., Surf. Sci. 290, 375 (1993).Google Scholar
53. Golan, Y., Hodes, G., Rubinstein, I., J. Phys. Chem. 100, 2220 (1996).Google Scholar
54. Schottand, J. H., Ward, M. D., J. of Am. Chem. Soc. 116, 6806 (1994).Google Scholar
55. Toney, M. F., Howard, J. N., Richer, J., Borges, G. L., Gordon, J. G., Melroy, O. R., Yee, D., and Sorensen, L. B., Phys. Rev. Lett. 75, 4472 (1995).Google Scholar
56. Lister, T. E., Huang, B. M., Herrick, R. D. II, and Stickney, J. L., J. Vac. Sci. Technol. B 13, 1268 (1995).Google Scholar
57. Rhee, C. K., Huang, B. M., Wilmer, E. M., Thomas, S. and Stickney, J. L., Mat. Manuf. Processes 10, 283 (1995).Google Scholar
58. Mola, E. E., Appignanessi, A. G., Vicente, J. L., Vazquez, L., Salvarezza, R. C. and Avia, A. J., Surf. Rev. Lett. 2, 489 (1995).Google Scholar
59. Hillier, A.C., Schott, J. H. and Ward, M. D., Adv. Mater. 4, 409 (1995).Google Scholar
60. Li, J., Herrero, E. and Abruña, H., “UPD of Hg on Au(111): An In-situ Surface X-ray Scattering Study”, CHESS meeting, Cornell (1996).Google Scholar
61. Finnefrock, A., Brock, J. D. and Abruña, H., “In-situ Surface X-ray Scattering Study of UPD of Cu on Pt(111)”, CHESS meeting, Cornell (1996).Google Scholar
62. Sapoval, B., in Fractals and Disordered Systems, Bunde, A. and Havlin, S.,eds., Springer-Verlag, New York (1991), p. 207.Google Scholar
63. Huttle, Y., Chassaing, E., Rosso, M., and Sapoval, B., in Fractal Aspects of Materials, Family, F., Meakin, P., Sapoval, B. and Wool, R., eds., Mat. Res. Soc, Pittsburgh (1993), p. 177.Google Scholar
64. Hecker, N., Grier, D. G. and Sander, L. M., in Extended Abstracts: Fractal Aspects of Materials, Weitz, D., Sander, L. M., and Mandelbrot, B. B., eds., Mat. Res. Soc, Pittsburgh (1988), p. 17.Google Scholar
65. Barkey, D. P., J. Electrochem. Soc. 138, 2912(1991).Google Scholar
66. Fleury, V., Rosso, M., Chazalviel, J.-N. and Sapoval, B., Phys. Rev. A 44, 6693 (1991).Google Scholar
67. Barkey, D. P. and Laporte, P. D., J. Electrochem. Soc. 137, 1655 (1990).Google Scholar
68. Trigueros, P., Sagués, F. and Claret, J., Phys. Rev. E 49, 4328 (1994).Google Scholar
69. Rosso, M., Chazalviel, J.-N., Fleury, V., Chassaing, E., Electrochimica Acta 39, 507 (1994).Google Scholar
70. Fleury, V., Rosso, M., and Chazalviel, J.-N., Phys. Rev. Lett. 68, 2492 (1992).Google Scholar
71. Fleury, V., Chazalviel, J.-N., and Rosso, M., Phys. Rev. E 48, 1279 (1993).Google Scholar
72. Bruinsma, R. and Alexanders, S.. Chem. Phys. 92, 3074 (1990).Google Scholar
73. Livermore, C. and Wong, P., Phys. Rev. Lett. 72, 3847 (1994).Google Scholar
74. Barkey, D., Watt, D., Liu, Z., Raber, S., J. Eelctrochem. Soc. 141, 1206 (1994).Google Scholar
75. Hutt, J. M., Swinney, H. L., McCormick, W. D., Kuhn, A. and Argoul, F., Phys. Rev. E 51, 3444 (1995).Google Scholar
76. ArgFaragoul, F. and Kuhn, A., Physica A 213, 209 (1995).Google Scholar
77. Chazalviel, J.-N., Rosso, M., Chassaing, E., Fleury, V., J. Electroanal. Chem. 407, 61 (1996).Google Scholar
78. Lòpez-Salvans, M.-Q., Trigueros, P. P., Vallmitjana, S., Claret, J. and Sagués, F., Phys. Rev. Lett. 76, 4062 (1996).Google Scholar
79. Vetter, K. J., Electrochemical Kinetics, Academic Press, New York (1967).Google Scholar
80. Sun, T., Guo, H. and Grant, M., Phys. Rev. A 40, 6763 (1989).Google Scholar
81. Wolf, D.E. and Villain, J., Europhys. Lett. 13, 389(1990).Google Scholar
82. Amar, J. G., Lam, P.-M., and Family, F., Phys. Rev. E 47, 3242 (1993).Google Scholar
83. Pastor, J. M. and Rubio, M. A., Phys. Rev. Lett. 76, 1848 (1996).Google Scholar
84. Krug, J. and Meakin, P., Phys. Rev. Lett. 66, 703 (1991).Google Scholar
85. Ehrlich, G. and Hudda, F., J. Chem. Phys. 44, 1039 (1966);Google Scholar
Schwoebel, R. L., J. Appl. Phys. 40, 614 (1969).Google Scholar
86. Huang, M. B., Lister, T. E. and Stickney, J. L., in Handbook of Surface Imaging and Visualization, edited by Hubbard, A. T., Chemical Rubber Company, Boca Raton (1995), Ch. 7, p. 75.Google Scholar
87. Atomic Layer Epitaxy, edited by Bedair, S., Elsevier, New York (1992);Google Scholar
Atomic Layer Growth and Processing, edited by Dapkus, P. D. and Kuech, T. F., Mat. Res. Soc. Proc. 222, Materials Research Society, Pittsburgh (1991).Google Scholar
88. Amar, J. G. and Family, F., Phys. Rev. B 54, 14742 (1996).Google Scholar
89. Corcoran, S. G., Chakarova, G. S., and Sieradzki, K., Phys. Rev. Lett. 71, 1585 (1993).Google Scholar
90. Searson, P. C., Li, R. and Sieradzki, K., Phys. Rev. Lett. 74, 1395 (1995).Google Scholar
91. Porter, J.D. and Robinson, T.O., J. Phys. Chem. 97, 6696 (1993).Google Scholar